题目大意
在平面上给定n个矩形,可以相互覆盖全部或者部分,求出矩形占据的总面积。
题目分析
将矩形按照x方向的进行分割之后,将平面沿着y方向划分一系列单元(不定高度),每个矩形在y方向上占据若干连续的单元;在x方向上,将矩形按照x坐标排序之后,考虑有一个扫描线从左到右扫描,当扫描线进入矩形之后,所有矩形在扫描线上占据的总长度有可能增加,而扫面线离开某个矩形时,所有矩形在扫描线上占据的总长度有可能减少。
在计算面积的时候,将当前扫描点 所有矩形在扫描线上占据的总长度 乘以 当前扫描点到下一扫描点的长度,直到所有矩形均出扫描线。区间操作,考虑使用线段树。
实现(c++)
#define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include<algorithm> #include<string.h> #include<vector> using namespace std; #define MAX_RECT_NUM 1000 #define MAX_SEG_NUM MAX_RECT_NUM * 2 #define MAX_NODE_NUM 4*MAX_SEG_NUM #define MAX(a, b) a > b? a :b #define MIN(a, b) a < b? a :b //根据矩形的上下边在y方向上划分区间单元(长度不固定),每个矩形占据y方向上的连续的几个单元,形成区间 struct Rect{ double top_left_x; double top_left_y; double bottom_right_x; double bottom_right_y; int interval_beg; //在y轴上,该矩形所占据区间的起始单元序号 int interval_end; //在y轴上,该矩形所占据区间的结束单元序号(从下向上) inteval_beg 和 interval_end为 闭区间 }; Rect gRects[MAX_RECT_NUM]; vector<double> gPartPoint; //用于离散化的点纵坐标 vector<double> gSegs; //离散化之后的段单元长度 struct Node{ int beg; //在y轴方向离散化之后,节点所代表区间的起始块号 int end; //节点所代表区间的终止块号 double length; //节点所代表区间的长度(y轴方向) int covered_num; //扫描线被多少个矩形覆盖 }; Node gNodes[MAX_NODE_NUM]; //对矩形进行x坐标从小到大排序,便于进行扫描 bool CmpToSortRect(const Rect& rect1, const Rect& rect2){ if (rect1.top_left_x == rect2.top_left_x) return rect1.bottom_right_x < rect2.bottom_right_x; return rect1.top_left_x < rect2.top_left_x; } void BuildTree(int beg, int end, int index){ gNodes[index].beg = beg; gNodes[index].end = end; gNodes[index].covered_num = 0; if (beg == end){ gNodes[index].length = gSegs[beg]; return; } int left = 2 * index + 1; int right = 2 * index + 2; int mid = (beg + end) / 2; BuildTree(beg, mid, left); BuildTree(mid + 1, end, right); //由子节点长度得到父节点代表区间的长度 gNodes[index].length = gNodes[left].length + gNodes[right].length; } //向下更新 void PushDown(int index){ if (gNodes[index].covered_num){ int left = 2 * index + 1, right = 2 * index + 2; gNodes[left].covered_num += gNodes[index].covered_num; gNodes[right].covered_num += gNodes[index].covered_num; } gNodes[index].covered_num = 0; } //向上更新 void PushUp(int index){ int left = 2 * index + 1, right = 2 * index + 2; int min = MIN(gNodes[left].covered_num, gNodes[right].covered_num); gNodes[index].covered_num = min; gNodes[left].covered_num -= min; gNodes[right].covered_num -= min; } //当扫描线进入矩形区域时step_in = true, 否则为false void Update(int beg, int end, int index, bool step_in){ if (gNodes[index].beg >= beg && gNodes[index].end <= end){ if (step_in){ gNodes[index].covered_num++; } else{ gNodes[index].covered_num--; } return; } if (gNodes[index].end < beg || gNodes[index].beg > end){ return; } if (beg > end){ return; } int left = 2 * index + 1, right = 2 * index + 2; int mid = (gNodes[index].beg + gNodes[index].end) / 2; //向下递归时,先pushdown 向下更新 PushDown(index); Update(beg, MIN(mid, end), left, step_in); Update(MAX(mid + 1, beg), end, right, step_in); //递归返回进行 向上更新 PushUp(index); } //查询,查询当前情况下,扫描线占据的矩形y方向长度 double Query(int index){ if (gNodes[index].covered_num > 0){ return gNodes[index].length; } if (gNodes[index].beg == gNodes[index].end){ return 0; } int left = 2 * index + 1, right = 2 * index + 2; return Query(left) + Query(right); } bool DoubleEqual(double d1, double d2){ if (abs(d1 - d2) < 1e-7){ return true; } return false; } int main(){ int n, cas = 1; while (true){ scanf("%d", &n); if (n == 0){ break; } gPartPoint.clear(); for (int i = 0; i < n; i++){ scanf("%lf %lf %lf %lf", &gRects[i].top_left_x, &gRects[i].top_left_y, &gRects[i].bottom_right_x, &gRects[i].bottom_right_y); gPartPoint.push_back(gRects[i].top_left_y); //得到y方向上的各个离散的分界点 gPartPoint.push_back(gRects[i].bottom_right_y); } //对分界点进行排序,去重 sort(gPartPoint.begin(), gPartPoint.end()); vector<double>::iterator it = unique(gPartPoint.begin(), gPartPoint.end()); gPartPoint.erase(it, gPartPoint.end()); //根据分界点,得到离散化之后的区间长度 gSegs.clear(); gSegs.reserve(gPartPoint.size()); for (int i = 0; i < gPartPoint.size() - 1; i++){ double len = gPartPoint[i + 1] - gPartPoint[i]; gSegs.push_back(len); } //得到每个矩形在y方向上占据的离散化之后的区间的 beg和end(闭区间) for (int i = 0; i < n; i++){ vector<double>::iterator it = find(gPartPoint.begin(), gPartPoint.end(), gRects[i].top_left_y); gRects[i].interval_beg = it - gPartPoint.begin(); it = find(gPartPoint.begin(), gPartPoint.end(), gRects[i].bottom_right_y); gRects[i].interval_end = it - gPartPoint.begin() - 1; } BuildTree(0, gSegs.size() - 1, 0); //将x方向的各个分割点进行排序,去重 gPartPoint.clear(); for (int i = 0; i < n; i++){ gPartPoint.push_back(gRects[i].top_left_x); gPartPoint.push_back(gRects[i].bottom_right_x); } sort(gPartPoint.begin(), gPartPoint.end()); it = unique(gPartPoint.begin(), gPartPoint.end()); gPartPoint.erase(it, gPartPoint.end()); int seg_num = gSegs.size(); double sum_area = 0; double height = 0; int beg, end; for (int i = 0; i < gPartPoint.size() - 1; i++){ for (int r = 0; r < n; r++){ if (DoubleEqual(gRects[r].top_left_x, gPartPoint[i])){ //扫描线进入矩形 Update(gRects[r].interval_beg, gRects[r].interval_end, 0, true); } if (DoubleEqual(gRects[r].bottom_right_x, gPartPoint[i])){//扫描线离开矩形 Update(gRects[r].interval_beg, gRects[r].interval_end, 0, false); } } height = Query(0); sum_area += height*(gPartPoint[i + 1] - gPartPoint[i]); } printf("Test case #%d ", cas ++); printf("Total explored area: %.2lf ", sum_area); } return 0; }