• 学习Caffe(一)安装Caffe


    Caffe是一个深度学习框架,本文讲阐述如何在linux下安装GPU加速的caffe。
    系统配置是:

    • OS: Ubuntu14.04
    • CPU: i5-4690
    • GPU: GTX960
    • RAM: 8G

    安装方法参见caffe的官方文档:http://caffe.berkeleyvision.org/installation.html#compilation
    依赖项:

    • CUDA:推荐7.0以上的cuda和最新的显卡驱动。
    • BLAS:ATLAS, MKL, or OpenBLAS。C++矩阵运算库。
    • Boost >= 1.55。用到一些数学函数等。
    • protobuf:是一种轻便、高效的结构化数据存储格式,可以用于结构化数据串行化,很适合做数据存储或 RPC 数据交换格式。
    • glog&&gflags:谷歌的一个日志库;命令行参数解析库。方便调试使用。
    • hdf5:
    • lmdb,leveldb:数据库IO。准备数据时会用到。

    可选依赖:

    • OpenCV >= 2.4 including 3.0
    • IO libraries: lmdb, leveldb (note: leveldb requires snappy)
    • cuDNN for GPU acceleration (v5)

    Pycaffe:
    Python 2.7 or Python 3.3+, numpy (>= 1.7), boost-provided boost.python

    Matcaffe:
    MATLAB with the mex compiler

    安装CUDA7.5

    CUDA维基百科:https://zh.wikipedia.org/wiki/CUDA
    CUDA(Compute Unified Device Architecture,统一计算架构)是由NVIDIA所推出的一种集成技术,是该公司对于GPGPU的正式名称。通过这个技术,用户可利用NVIDIA的GeForce 8以后的GPU和较新的Quadro GPU进行计算。亦是首次可以利用GPU作为C-编译器的开发环境。

    安装过程

    1.下载Cuda

    下载CUDA:https://developer.nvidia.com/cuda-downloads 选择下载deb包(或者runfile),下载完后用mu5sum检查一下文件是否完整。按照cuda官方文档安装cuda.

    2.安装

    先关闭桌面显示管理器lightdm,进入字符界面,在字符界面安装cuda。(这是因为cuda的安装包里包含了显卡驱动,安装驱动前要先关闭桌面显示管理器)
    (也可分别安装显卡驱动与cuda库)

    sudo service stop

    切换到deb包目录,执行下面的命令

    sudo dpkg -i cuda-repo-<distro>_<version>_<architecture>.deb  
    sudo apt-get update  
    sudo apt-get install cuda  

    然后重启电脑:sudo reboot
    注意,cuda的安装包中已经包含了较新版本的显卡驱动。

    3.配置环境变量

    将cuda安装目录下的bin路径导出到系统的搜索路径path
    这里写图片描述
    并使之生效
    这里写图片描述
    添加动态库查找路径:在 /etc/ld.so.conf.d/加入文件 cuda.conf, 内容如下

    /usr/local/cuda/lib64

    保存后,执行下列命令使之立刻生效:

    sudo ldconfig

    4.验证

    查看Cuda的C编译器NVCC的版本:

    nvcc -V

    这里写图片描述

    编译并运行例子,进入cuda目录下的samples目录,然后在该目录下make,等待十来分钟。编译完成后,可以在Samples里面找到bin/x86_64/linux/release/目录,并切换到该目录
    运行deviceQuery程序,查看输出结果如下(重点关注最后一行,Pass表示通过测试)。
    这里写图片描述

    5.gcc编译器版本

    该版本cuda不支持gcc5.0的编译器

    参考文献:
    [1]Ubuntu 16.04 安装 NVIDIA CUDA Toolkit 7.5 https://gist.github.com/dangbiao1991/2c895917ea888ce33af8c1c72444b7bf
    [2]Ubuntu 14.04+cuda 7.5+caffe安装配置 http://blog.csdn.net/ubunfans/article/details/47724341

    安装Cudnn

    下载cudnn https://developer.nvidia.com/rdp/cudnn-download, 解压,把lib目录,include目录分别复制到cuda的安装目录下。

    安装BLAS

    install ATLAS by sudo apt-get install libatlas-base-dev or install OpenBLAS or MKL for better CPU performance.

    下载Caffe

    安装Caffe依赖库

    通用依赖库:

    sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
    sudo apt-get install --no-install-recommends libboost-all-dev

    Ubuntu14.04 依赖库:

    sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev

    PyCaffe依赖库

    进入caffe/python目录,安装依赖项:

    for req in $(cat requirements.txt); do pip install $req; done

    caffe官网推荐使用Anaconda http://continuum.io/downloads#all Anaconda是一个和Canopy类似的科学计算环境,但用起来更加方便。自带的包管理器conda也很强大。

    MatCaffe

    安装matlabR2014a

    编译caffe

    复制并修改Makefile.config文件:

    ## Refer to http://caffe.berkeleyvision.org/installation.html
    # Contributions simplifying and improving our build system are welcome!
    
    # cuDNN acceleration switch (uncomment to build with cuDNN).
      USE_CUDNN := 1
    
    # CPU-only switch (uncomment to build without GPU support).
    # CPU_ONLY := 1
    
    # uncomment to disable IO dependencies and corresponding data layers
    # USE_OPENCV := 0
    # USE_LEVELDB := 0
    # USE_LMDB := 0
    
    # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
    #   You should not set this flag if you will be reading LMDBs with any
    #   possibility of simultaneous read and write
    # ALLOW_LMDB_NOLOCK := 1
    
    # Uncomment if you're using OpenCV 3
    # OPENCV_VERSION := 3
    
    # To customize your choice of compiler, uncomment and set the following.
    # N.B. the default for Linux is g++ and the default for OSX is clang++
    # CUSTOM_CXX := g++
    
    # CUDA directory contains bin/ and lib/ directories that we need.
    CUDA_DIR := /usr/local/cuda
    # On Ubuntu 14.04, if cuda tools are installed via
    # "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
    # CUDA_DIR := /usr
    
    # CUDA architecture setting: going with all of them.
    # For CUDA < 6.0, comment the *_50 lines for compatibility.
    CUDA_ARCH := -gencode arch=compute_20,code=sm_20 
            -gencode arch=compute_20,code=sm_21 
            -gencode arch=compute_30,code=sm_30 
            -gencode arch=compute_35,code=sm_35 
            -gencode arch=compute_50,code=sm_50 
            -gencode arch=compute_50,code=compute_50
    
    # BLAS choice:
    # atlas for ATLAS (default)
    # mkl for MKL
    # open for OpenBlas
    BLAS := atlas
    # Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
    # Leave commented to accept the defaults for your choice of BLAS
    # (which should work)!
    # BLAS_INCLUDE := /path/to/your/blas
    # BLAS_LIB := /path/to/your/blas
    
    # Homebrew puts openblas in a directory that is not on the standard search path
    # BLAS_INCLUDE := $(shell brew --prefix openblas)/include
    # BLAS_LIB := $(shell brew --prefix openblas)/lib
    
    # This is required only if you will compile the matlab interface.
    # MATLAB directory should contain the mex binary in /bin.
    MATLAB_DIR := /usr/local/MATLAB/R2014a
    # MATLAB_DIR := /Applications/MATLAB_R2012b.app
    
    # NOTE: this is required only if you will compile the python interface.
    # We need to be able to find Python.h and numpy/arrayobject.h.
     PYTHON_INCLUDE := /usr/include/python2.7 
            /usr/local/lib/python2.7/dist-packages/numpy/core/include
    # Anaconda Python distribution is quite popular. Include path:
    # Verify anaconda location, sometimes it's in root.
    # ANACONDA_HOME := $(HOME)/anaconda
    # PYTHON_INCLUDE := $(ANACONDA_HOME)/include 
    #        $(ANACONDA_HOME)/include/python2.7 
    #        $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include 
    
    # Uncomment to use Python 3 (default is Python 2)
    # PYTHON_LIBRARIES := boost_python3 python3.5m
    # PYTHON_INCLUDE := /usr/include/python3.5m 
    #                 /usr/lib/python3.5/dist-packages/numpy/core/include
    
    # We need to be able to find libpythonX.X.so or .dylib.
     PYTHON_LIB := /usr/lib
    # PYTHON_LIB := $(ANACONDA_HOME)/lib
    
    # Homebrew installs numpy in a non standard path (keg only)
    # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
    # PYTHON_LIB += $(shell brew --prefix numpy)/lib
    
    # Uncomment to support layers written in Python (will link against Python libs)
     WITH_PYTHON_LAYER := 1
    
    # Whatever else you find you need goes here.
    INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
    LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
    
    # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
    # INCLUDE_DIRS += $(shell brew --prefix)/include
    # LIBRARY_DIRS += $(shell brew --prefix)/lib
    
    # Uncomment to use `pkg-config` to specify OpenCV library paths.
    # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
    # USE_PKG_CONFIG := 1
    
    # N.B. both build and distribute dirs are cleared on `make clean`
    BUILD_DIR := build
    DISTRIBUTE_DIR := distribute
    
    # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
    # DEBUG := 1
    
    # The ID of the GPU that 'make runtest' will use to run unit tests.
    TEST_GPUID := 0
    
    # enable pretty build (comment to see full commands)
    Q ?= @

    进入caffe目录,执行:

    make all
    make test
    make runtest

    无错误,编译完成。

    编译pycaffe与matcaffe

    进入caffe目录,执行

    make pycaffe
    make matcaffe

    Caffe python接口

    复制caffe/python/caffe 到/usr/local/lib/python2.7/dist-packages/目录下。
    复制caffe/build/lib/下的库文件到/usr/local/lib

    $ sudo ldconfig

    打开python,import caffe,无错误。

    Caffe C++接口

    分别将include,lib目录复制。

    测试

    测试mnist http://caffe.berkeleyvision.org/gathered/examples/mnist.html

    准备数据

    cd $CAFFE_ROOT
    ./data/mnist/get_mnist.sh
    ./examples/mnist/create_mnist.sh

    LeNet: the MNIST Classification Model

  • 相关阅读:
    【CF516D】Drazil and Morning Exercise(换根DP预处理+暴力双指针)
    【CF538G】Berserk Robot(思维)
    【CF521D】Shop(贪心)
    【洛谷4827】[国家集训队] Crash 的文明世界(斯特林数+换根DP)
    斯特林数的基础性质与斯特林反演的初步入门
    【CF566C】Logistical Questions(点分治)
    【CF980D】Perfect Groups(仔细一想是道水题)
    【洛谷2597】[ZJOI2012] 灾难(支配树)
    2020CCPC长春站题解A D F H J K
    2020CCPC长春站自我反省
  • 原文地址:https://www.cnblogs.com/goodluckcwl/p/5686094.html
Copyright © 2020-2023  润新知