• 排序


    算法分类

    十种常见排序算法可以分为两大类:

    非线性时间比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此称为非线性时间比较类排序。

    线性时间非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此称为线性时间非比较类排序。 

    算法复杂度

    具体算法描述参考博文:

     https://www.cnblogs.com/onepixel/articles/7674659.html

     

    题目描述

    输入n个整数,找出其中最小的K个数。例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,。
     

    方法一:蒂姆排序

    class Solution:

        def GetLeastNumbers_Solution(self, tinput, k):
            # write code here
            if tinput == [] or k > len(tinput):
                return []
            tinput.sort()
            return tinput[: k]
     
    方法二:快速排序
    思想:每次排序的时候设置一个基准点,将小于等于基准点的数全部放到基准点的左边,将大于等于基准点的数全部放到基准点的右边。
    class Solution:
        def GetLeastNumbers_Solution(self, tinput, k):
            # write code here
            def quick_sort(lst):
                if not lst:
                    return []
                pivot = lst[0]   #基准点
                left = quick_sort([x for x in lst[1: ] if x < pivot])
                right = quick_sort([x for x in lst[1: ] if x >= pivot])
                return left + [pivot] + right
     
            if tinput == [] or k > len(tinput):
                return []
            tinput = quick_sort(tinput)
            return tinput[: k]
     
    方法三:归并排序
    思想:将两个的有序数列合并成一个有序数列,我们称之为"归并"。将一个数组一直对半分,问题的规模就减小了,再重复进行这个过程,直到元素的个数为一个时,一个元素就相当于是排好顺序的。接下来就是合并的过程了。一开始合成两个元素,然后合并4个,8个这样进行。
    class Solution:
        def GetLeastNumbers_Solution(self, tinput, k):
            # write code here
            def merge_sort(lst):
                if len(lst) <= 1:
                    return lst
                mid = len(lst) // 2
                left = merge_sort(lst[: mid])
                right = merge_sort(lst[mid:])
                return merge(left, right)
            def merge(left, right):
                l, r, res = 0, 0, []
                while l < len(left) and r < len(right):
                    if left[l] <= right[r]:
                        res.append(left[l])
                        l += 1
                    else:
                        res.append(right[r])
                        r += 1
                res += left[l:]
                res += right[r:]
                return res
            if tinput == [] or k > len(tinput):
                return []
            tinput = merge_sort(tinput)
            return tinput[: k]
     
     方法四:堆排序
    (这篇文章堆排序写的很详细:https://www.jianshu.com/p/d174f1862601)

    设当前元素在数组中以R[i]表示,那么,(1) 它的左孩子结点是:R[2*i+1];  (2) 它的右孩子结点是:R[2*i+2];  (3) 它的父结点是:R[(i-1)/2];

    可归纳为两个操作:

    (1)根据初始数组去构造初始堆(构建一个完全二叉树,保证所有的父结点都比它的孩子结点数值大(最大堆))。

    (2)每次交换第一个和最后一个元素,输出最后一个元素(最大值),然后把剩下元素重新调整为大根堆。 

    class Solution:
        def GetLeastNumbers_Solution(self, tinput, k):
            # write code here
            def siftup(lst, temp, begin, end):
                if lst == []:
                    return []
                i, j = begin, begin * 2 + 1
                while j < end:
                    if j + 1 < end and lst[j + 1] > lst[j]:
                        j += 1
                    elif temp > lst[j]:
                        break
                    else:
                        lst[i] = lst[j]
                        i, j = j, 2 * j + 1
                lst[i] = temp
     
            def heap_sort(lst):
                if lst == []:
                    return []
                end = len(lst)
                for i in range((end // 2) - 1, -1, -1):
                    siftup(lst, lst[i], i, end)
                for i in range(end - 1, 0, -1):
                    temp = lst[i]
                    lst[i] = lst[0]
                    siftup(lst, temp, 0, i)
                return lst
     
            if tinput == [] or k > len(tinput):
                return []
            tinput = heap_sort(tinput)
            return tinput[: k]
     
    方法五:冒泡排序
    • 比较相邻的元素。如果第一个比第二个大,就交换它们两个;
    • 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
    • 针对所有的元素重复以上的步骤,除了最后一个;
    • 重复步骤1~3,直到排序完成。
    class Solution:
        def GetLeastNumbers_Solution(self, tinput, k):
            # write code here
            def bubble_sort(lst):
                if lst == []:
                    return []
                for i in range(len(lst)):
                    for j in range(1, len(lst) - i):
                        if lst[j-1] > lst[j]:
                            lst[j-1], lst[j] = lst[j], lst[j-1]
                return lst
     
            if tinput == [] or k > len(tinput):
                return []
            tinput = bubble_sort(tinput)
            return tinput[: k]
     
    方法六:直接选择排序
    选择排序(Selection-sort)是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。 
     
    class Solution:
        def GetLeastNumbers_Solution(self, tinput, k):
            # write code here
            def select_sort(lst):
                if lst == []:
                    return []
                for i in range(len(lst)-1):
                    smallest = i
                    for j in range(i, len(lst)):
                        if lst[j] < lst[smallest]:
                            smallest = j
                    lst[i], lst[smallest] = lst[smallest], lst[i]
     
                return lst
     
            if tinput == [] or k > len(tinput):
                return []
            tinput = select_sort(tinput)
            return tinput[: k]
     
    方法七:插入排序
    插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
     
    class Solution:
        def GetLeastNumbers_Solution(self, tinput, k):
            # write code here
            def Insert_sort(lst):
                if lst == []:
                    return []
                for i in range(1, len(lst)):
                    temp = lst[i]
                    j = i
                    while j > 0 and temp < lst[j - 1]:
                        lst[j] = lst[j - 1]
                        j -= 1
                    lst[j] = temp
                return lst
     
            if tinput == [] or k > len(tinput):
                return []
            tinput = Insert_sort(tinput)
            return tinput[: k]
     
  • 相关阅读:
    乌龟git
    CI的model层的操作
    排序算法
    linux安装教程
    linux命令Netstat
    linux压缩和解压缩
    标准库模块time,datetime
    为什么计算机时间和众多编程语言要从1970年1月1日开始算起
    模块和包的导入
    Python封装应用程序的最佳项目结构是什么?
  • 原文地址:https://www.cnblogs.com/girl1314/p/10469843.html
Copyright © 2020-2023  润新知