BlockingQueue
方法以四种形式出现,对于不能立即满足但可能在将来某一时刻可以满足的操作,这四种形式的处理方式不同:第一种是抛出一个异常,第二种是返回一个特殊值(null
或 false
,具体取决于操作),第三种是在操作可以成功前,无限期地阻塞当前线程,第四种是在放弃前只在给定的最大时间限制内阻塞。下表中总结了这些方法:
|
抛出异常 | 特殊值 | 阻塞 | 超时 |
插入 | add(e) |
offer(e) |
put(e) |
offer(e, time, unit) |
移除 | remove() |
poll() |
take() |
poll(time, unit) |
检查 | element() |
peek() |
不可用 | 不可用 |
3.BlockingQueue定义的常用方法详解:
1)add(anObject):把anObject加到BlockingQueue里,即如果BlockingQueue可以容纳,则返回true,否则报异常
2)offer(anObject):表示如果可能的话,将anObject加到BlockingQueue里,即如果BlockingQueue可以容纳,则返回true,否则返回false.
3)put(anObject):把anObject加到BlockingQueue里,如果BlockQueue没有空间,则调用此方法的线程被阻断直到BlockingQueue里面有空间再继续.
4)poll(time):取走BlockingQueue里排在首位的对象,若不能立即取出,则可以等time参数规定的时间,取不到时返回null
5)take():取走BlockingQueue里排在首位的对象,若BlockingQueue为空,阻断进入等待状态直到Blocking有新的对象被加入为止
2.BlockingQueue有四个具体的实现类,根据不同需求,选择不同的实现类
1)ArrayBlockingQueue:规定大小的BlockingQueue,其构造函数必须带一个int参数来指明其大小.其所含的对象是以FIFO(先入先出)顺序排序的.
2)LinkedBlockingQueue:大小不定的BlockingQueue,若其构造函数带一个规定大小的参数,生成的 BlockingQueue有大小限制,若不带大小参数,所生成的BlockingQueue的大小由Integer.MAX_VALUE来决定.其所含 的对象是以FIFO(先入先出)顺序排序的
3)PriorityBlockingQueue:类似于LinkedBlockQueue,但其所含对象的排序不是FIFO,而是依据对象的自然排序顺序或者是构造函数的Comparator决定的顺序.
4)SynchronousQueue:特殊的BlockingQueue,对其的操作必须是放和取交替完成的.
3.LinkedBlockingQueue和ArrayBlockingQueue比较起来,它们背后所用的数据结构不一样,导致 LinkedBlockingQueue的数据吞吐量要大于ArrayBlockingQueue,但在线程数量很大时其性能的可预见性低于 ArrayBlockingQueue.
在网上找到两个例子 :
package com.thread; import java.util.concurrent.ArrayBlockingQueue; import java.util.concurrent.BlockingQueue; public class BlockingQueueTest { public static void main(String[] args) { final BlockingQueue queue = new ArrayBlockingQueue(3); for(int i=0;i<2;i++){ new Thread(){ public void run(){ while(true){ try { Thread.sleep((long)(Math.random()*1000)); System.out.println(Thread.currentThread().getName() + "准备放数据!"); queue.put(1); System.out.println(Thread.currentThread().getName() + "已经放了数据," + "队列目前有" + queue.size() + "个数据"); } catch (InterruptedException e) { e.printStackTrace(); } } } }.start(); } new Thread(){ public void run(){ while(true){ try { //将此处的睡眠时间分别改为100和1000,观察运行结果 Thread.sleep(1000); System.out.println(Thread.currentThread().getName() + "准备取数据!"); queue.take(); System.out.println(Thread.currentThread().getName() + "已经取走数据," + "队列目前有" + queue.size() + "个数据"); } catch (InterruptedException e) { e.printStackTrace(); } } } }.start(); } }
***********************************
public class BlockingQueueCondition { public static void main(String[] args) { ExecutorService service = Executors.newSingleThreadExecutor(); final Business3 business = new Business3(); service.execute(new Runnable(){ public void run() { for(int i=0;i<50;i++){ business.sub(); } } }); for(int i=0;i<50;i++){ business.main(); } } } class Business3{ BlockingQueue subQueue = new ArrayBlockingQueue(1); BlockingQueue mainQueue = new ArrayBlockingQueue(1); //这里是匿名构造方法,只要new一个对象都会调用这个匿名构造方法,它与静态块不同,静态块只会执行一次, //在类第一次加载到JVM的时候执行 //这里主要是让main线程首先put一个,就有东西可以取,如果不加这个匿名构造方法put一个的话程序就死锁了 { try { mainQueue.put(1); } catch (InterruptedException e) { e.printStackTrace(); } } public void sub(){ try { mainQueue.take(); for(int i=0;i<10;i++){ System.out.println(Thread.currentThread().getName() + " : " + i); } subQueue.put(1); }catch(Exception e){ } } public void main(){ try { subQueue.take(); for(int i=0;i<5;i++){ System.out.println(Thread.currentThread().getName() + " : " + i); } mainQueue.put(1); }catch(Exception e){ } } }