• 高斯滤波


    1.通俗讲,对整幅图像进行加权平均的过程。

    2.十分有效的低通滤波器。

    3.两种实现:1.离散化窗口滑窗卷积;2.傅里叶变换。

    4.高斯函数:

                   (e:自然对数,≈2.71828)

    5.高斯函数积分:

       

    6.高斯分布:

      

    7.高斯滤波性质(5个):

      1)二维高斯函数具有旋转对称性,即滤波器在各个方向上的平滑程度是相同的.一般来说,一幅图像的边缘方向是事先不知道的,因此,在滤波前是无法确定一个方向上比另一方向上需要更多的平滑.旋转对称性意味着高斯平滑滤波器在后续边缘检测中不会偏向任一方向. 

      (2)高斯函数是单值函数.这表明,高斯滤波器用像素邻域的加权均值来代替该点的像素值,而每一邻域像素点权值是随该点与中心点的距离单调增减的.这一性质是很重要的,因为边缘是一种图像局部特征,如果平滑运算对离算子中心很远的像素点仍然有很大作用,则平滑运算会使图像失真. 

      (3)高斯函数的傅立叶变换频谱是单瓣的.正如下面所示,这一性质是高斯函数付立叶变换等于高斯函数本身这一事实的直接推论.图像常被不希望的高频信号所污染(噪声和细纹理).而所希望的图像特征(如边缘),既含有低频分量,又含有高频分量.高斯函数付立叶变换的单瓣意味着平滑图像不会被不需要的高频信号所污染,同时保留了大部分所需信号. 

      (4)高斯滤波器宽度(决定着平滑程度)是由参数σ表征的,而且σ和平滑程度的关系是非常简单的.σ越大,高斯滤波器的频带就越宽,平滑程度就越好.通过调节平滑程度参数σ,可在图像特征过分模糊(过平滑)与平滑图像中由于噪声和细纹理所引起的过多的不希望突变量(欠平滑)之间取得折衷. 

      (5)由于高斯函数的可分离性,较大尺寸的高斯滤波器可以得以有效地实现.二维高斯函数卷积可以分两步来进行,首先将图像与一维高斯函数进行卷积,然后将卷积结果与方向垂直的相同一维高斯函数卷积.因此,二维高斯滤波的计算量随滤波模板宽度成线性增长而不是成平方增长.

    8.代码见另篇。

  • 相关阅读:
    jQuery中jsonp的跨域处理,no access-control-allow-origin,unexpected token
    doT中嵌套for循环的使用
    c++ new带括号和不带括号
    python装饰器之使用情景分析
    Python中classmethod与staticmethod区别
    python作用域 scope
    duck type鸭子类型
    EAFP和LBYL 两种防御性编程风格
    c++重载、覆盖和隐藏
    c++ 名字粉碎(name mangling)
  • 原文地址:https://www.cnblogs.com/gaara-zhang/p/9556339.html
Copyright © 2020-2023  润新知