区间dp+四边形优化
luogu:p2858
题意
给出一列数 (v_i),每天只能取两端的数,第 j 天取数价值为(v_i imes j),最大价值??
转移方程
dp[i][j] :n天卖掉i..j货物的收益
dp[begin][end]=max(dp[begin][end-1]+value[end]*(n-len+1) ,dp[begin+1][end]+value[begin]*(n-len+1));
注意理解
代码
递推形式
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define mm1(x) memset(x,-1,sizeof(x))
#define maxn 2010
int dp[maxn][maxn],value[maxn];
int n;
int solve(){
for(int i=1;i<=n;i++){
dp[i][i]=value[i]*n;
//*key:
}
//枚举长度:
for(int len=2;len<=n;len++){
//枚举起点
for(int begin=1;begin<=n-len+1;begin++){
int end=begin+len-1;
dp[begin][end]=max(dp[begin][end-1]+value[end]*(n-len+1)
,dp[begin+1][end]+value[begin]*(n-len+1));
}
}
return dp[1][n];
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",value+i);
}
mm1(dp);
printf("%d
",solve());
return 0;
}
记忆化搜索
#include<bits/stdc++.h>
using namespace std;
//记忆化搜素
#define maxn 2010
int dp[maxn][maxn],value[maxn];
#define mm(x) memset(x,-1,sizeof(x));
int dfs(int i,int j,int num){
if(i>j) return 0;
if(dp[i][j]!=-1) return dp[i][j];
else{
dp[i][j]=max(value[i]*num+dfs(i+1,j,num+1),
value[j]*num+dfs(i,j-1,num+1));
}
return dp[i][j];
}
int n;
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",value+i);
}
mm(dp);
int ans=dfs(1,n,1);
printf("%d
",ans);
return 0;
}
记忆化搜索很好理解也方便些,是追求解题速度的很好选择
p1880
题意
石子合并问题:(环形,最小值+最大值)
题解
环形,可用(2n)长度,将元素复制一份
转移方程
dpmin[i][j]=min(dpmin[i][j],dpmin[i][k]+dpmin[k+1][j]+sum[j]-sum[i-1]);
对于最小值可用四边形不等式优化
dpmax[i][j]=min(dpmax[i][j],dpmax[i][k]+dpmax[k+1][j]+sum[j]-sum[i-1]);
对于最大值,某大佬题解中提到可优化之讨论端点情况(但本渣没有弄清楚)
dpmax[i][j]=max(dpmax[i][j-1]+sum[j]-sum[i-1],dpmax[i+1][j]+sum[j]-sum[i-1]);
四边形不等式优化
四边形不等式优化核心满足条件:
记决策点为(k=s[i][j])
如果(s[i][j-1]<=k<=s[i+1][j]),则枚举k时,只需从s[i][j-1]枚举到s[i+1][j]$(因为这两者区间长度较短,已经被求出)
下面是重要的定理(不加证明的使用):
对于dp[i][j]=min(dp[i][k]+dp[k+1][j]+cost[i][j])
区间包含的单调性:如果小区间包含于大区间中,那么小区间的cost值不超过大区间的cost值
四边形不等式:两个交错区间的cost的和不超过小区间与大区间的cost的和
满足上述性质的cost,能够推出dp[i][j]满足四边形不等式,s[i][j]=k也满足上述性质。
综上,能够优化的关键在于cost[i][j]满足上述两个性质。*
代码
未优化代码:
#include<bits/stdc++.h>
using namespace std;
#define maxn 205
int dp1[maxn][maxn],dp2[maxn][maxn],value[maxn];
int sum[maxn];
//value[i]=value[i+n]
//区间dp
//dp[i][j]表示i..j最优得分
//O(N^3)
int n;
int min_ans=0x3f3f3f3f,max_ans=-1;
#define mm1(x) memset(x,-1,sizeof(x));
#define mm2(x) memset(x,0x3f,sizeof(x));
void init(){
mm1(dp1);
mm2(dp2);
for(int i=1;i<=2*n;i++){
sum[i]=sum[i-1]+value[i];
}
}
void solve(){
for(int i=1;i<=2*n;i++){
dp1[i][i]=dp2[i][i]=0;
}
for(int len=2;len<=n;len++){
for(int begin=1;begin<=(2*n-len+1);begin++){
int end=begin+len-1;
for(int j=begin;j<=end-1;j++){
dp1[begin][end]=max(dp1[begin][end],dp1[begin][j]+dp1[j+1][end]+sum[end]-sum[begin-1]);
dp2[begin][end]=min(dp2[begin][end],dp2[begin][j]+dp2[j+1][end]+sum[end]-sum[begin-1]);
}
}
}
for(int i=1;i<=n;i++){
//printf("db max:%d min:%d
",dp1[i][i+n-1],dp2[i][i+n-1]);
max_ans=max(max_ans,dp1[i][i+n-1]);
min_ans=min(min_ans,dp2[i][i+n-1]);
}
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",value+i);
value[i+n]=value[i];
}
init();
solve();
printf("%d
%d
",min_ans,max_ans);
return 0;
}
四边形不等式优化代码:
#include<bits/stdc++.h>
using namespace std;
//区间dp上的四边形优化
#define inf 0x3f3f3f3f
#define maxn 210
int sum[maxn],value[maxn];
int dpmax[maxn][maxn],dpmin[maxn][maxn];
int s[maxn][maxn];// min最优决策点
int n;
#define mm0(x) memset(x,0x3f,sizeof(x))
#define mm1(x) memset(x,-1,sizeof(x))
void init(){
mm1(dpmax);
mm0(dpmin);
for(int i=1;i<=2*n;i++){
sum[i]=sum[i-1]+value[i];
//printf("db i:%d sum[i] %d
",i,sum[i]);
}
}
int minv=inf,maxv=0;
void solve(){
for(int i=1;i<=2*n;i++){
dpmax[i][i]=dpmin[i][i]=0;
s[i][i]=i;
}
for(int len=2;len<=n;len++){
for(int i=1;i+len-1<=2*n;i++){
int j=i+len-1;
dpmax[i][j]=max(dpmax[i][j-1]+sum[j]-sum[i-1],dpmax[i+1][j]+sum[j]-sum[i-1]);
//某大佬认为最大值取得必然最后一次合并在左右两端
//目前自己没有想通和证明
int idx;
for(int k=s[i][j-1];k<=s[i+1][j];k++){
if((dpmin[i][k]+dpmin[k+1][j]+sum[j]-sum[i-1])<dpmin[i][j]){
dpmin[i][j]=dpmin[i][k]+dpmin[k+1][j]+sum[j]-sum[i-1];
idx=k;
}
s[i][j]=idx;
}
// printf("db min: %d k:%d i:%d j: %d
",dpmin[i][j],s[i][j],i,j);
}
}
for(int i=1;i<=n;i++){
//printf("db i:%d %d
",i,dpmin[i][i+n-1]);
minv=min(dpmin[i][i+n-1],minv);
maxv=max(dpmax[i][i+n-1],maxv);
}
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",value+i);
value[i+n]=value[i];
}
init();
solve();
printf("%d
%d
",minv,maxv);
return 0;
}