写的很好的一个模板,感谢作者。文章来源:http://www.cppblog.com/acronix/archive/2010/08/23/124470.aspx?opt=admin
下面是 m^n % k 的快速幂:
// m^n % k int quickpow(int m,int n,int k) { int b = 1; while (n > 0) { if (n & 1) b = (b*m)%k; n = n >> 1 ; m = (m*m)%k; } return b; }
下面是矩阵快速幂:
//HOJ 3493 /*===================================*/ || 快速幂(quickpow)模板 || P 为等比,I 为单位矩阵 || MAX 要初始化!!!! || /*===================================*/ /*****************************************************/ #include <cstdio> const int MAX = 3; typedef struct { int m[MAX][MAX]; } Matrix; Matrix P = {5,-7,4, 1,0,0, 0,1,0, }; Matrix I = {1,0,0, 0,1,0, 0,0,1, }; Matrix matrixmul(Matrix a,Matrix b) //矩阵乘法 { int i,j,k; Matrix c; for (i = 0 ; i < MAX; i++) for (j = 0; j < MAX;j++) { c.m[i][j] = 0; for (k = 0; k < MAX; k++) c.m[i][j] += (a.m[i][k] * b.m[k][j])%9997; c.m[i][j] %= 9997; } return c; } Matrix quickpow(long long n) { Matrix m = P, b = I; while (n >= 1) { if (n & 1) b = matrixmul(b,m); n = n >> 1; m = matrixmul(m,m); } return b; } /*************************************/ int main() { Matrix re; int f[3] = {2,6,19}; long long n; while (scanf("%I64d",&n) && n != 0) { if (n == 1) printf("1\n"); else if (n <= 4) printf("%d\n",f[n-2]); else { re = quickpow(n - 4); printf("%d\n",(((re.m[0][0]*f[2]) + (re.m[0][1]*f[1]) + (re.m[0][2]*f[0])) %9997 + 9997) % 9997); } } return 0; }