• 看动画学算法之:二叉搜索树BST


    简介

    树是类似于链表的数据结构,和链表的线性结构不同的是,树是具有层次结构的非线性的数据结构。

    树是由很多个节点组成的,每个节点可以指向很多个节点。

    如果一个树中的每个节点都只有0,1,2个子节点的话,这颗树就被称为二叉树,如果我们对二叉树进行一定的排序。

    比如,对于二叉树中的每个节点,如果左子树节点的元素都小于根节点,而右子树的节点的元素都大于根节点,那么这样的树被叫做二叉搜索树(Binary Search Tree)简称BST。

    今天我们来探讨一下BST的性质和对BST的基本操作。

    BST的基本性质

    刚刚我们已经讲过BST的基本特征了,现在我们再来总结一下:

    1. BST中任意节点的左子树一定要比该节点的值要小
    2. BST中任意节点的右子树一定要比该节点的值要大
    3. BST中任意节点的左右子树一定要是一个BST。

    看一张图直观的感受一下BST:

    BST的构建

    怎么用代码来构建一个BST呢?

    首先,BST是由一个一个的节点Node组成的,Node节点除了保存节点的数据之外,还需要指向左右两个子节点,这样我们的BST完全可以由Node连接而成。

    另外我们还需要一个root节点来表示BST的根节点。

    相应的代码如下:

    public class BinarySearchTree {
    
        //根节点
        Node root;
    
        class Node {
            int data;
            Node left;
            Node right;
    
            public Node(int data) {
                this.data = data;
                left = right = null;
            }
        }
    }
    

    BST的搜索

    先看下BST的搜索,如果是上面的BST,我们想搜索32这个节点应该是什么样的步骤呢?

    先上图:

    搜索的基本步骤是:

    1. 从根节点41出发,比较根节点和搜索值的大小
    2. 如果搜索值小于节点值,那么递归搜索左侧树
    3. 如果搜索值大于节点值,那么递归搜索右侧树
    4. 如果节点匹配,则直接返回即可。

    相应的java代码如下:

    //搜索方法,默认从根节点搜索
        public Node search(int data){
            return search(root,data);
        }
    
        //递归搜索节点
        private Node search(Node node, int data)
        {
            // 如果节点匹配,则返回节点
            if (node==null || node.data==data)
                return node;
    
            // 节点数据大于要搜索的数据,则继续搜索左边节点
            if (node.data > data)
                return search(node.left, data);
    
            // 如果节点数据小于要搜素的数据,则继续搜索右边节点
            return search(node.right, data);
        }
    

    BST的插入

    搜索讲完了,我们再讲BST的插入。

    先看一个动画:

    上的例子中,我们向BST中插入两个节点30和55。

    插入的逻辑是这样的:

    1. 从根节点出发,比较节点数据和要插入的数据
    2. 如果要插入的数据小于节点数据,则递归左子树插入
    3. 如果要插入的数据大于节点数据,则递归右子树插入
    4. 如果根节点为空,则插入当前数据作为根节点

    相应的java代码如下:

    // 插入新节点,从根节点开始插入
        public void insert(int data) {
            root = insert(root, data);
        }
    
        //递归插入新节点
        private Node insert(Node node, int data) {
    
            //如果节点为空,则创建新的节点
            if (node == null) {
                node = new Node(data);
                return node;
            }
    
            //节点不为空,则进行比较,从而递归进行左侧插入或者右侧插入
            if (data < node.data)
                node.left = insert(node.left, data);
            else if (data > node.data)
                node.right = insert(node.right, data);
    
            //返回插入后的节点
            return node;
        }
    

    BST的删除

    BST的删除要比插入复杂一点,因为插入总是插入到叶子节点,而删除可能删除的是非叶子节点。

    我们先看一个删除叶子节点的例子:

    上面的例子中,我们删除了30和55这两个节点。

    可以看到,删除叶子节点是相对简单的,找到之后删除即可。

    我们再来看一个比较复杂的例子,比如我们要删除65这个节点:

    可以看到需要找到65这个节点的右子树中最小的那个,替换掉65这个节点即可(当然也可以找到左子树中最大的那个)。

    所以删除逻辑是这样的:

    1. 从根节点开始,比较要删除节点和根节点的大小
    2. 如果要删除节点比根节点小,则递归删除左子树
    3. 如果要删除节点比根节点大,则递归删除右子树
    4. 如果节点匹配,又有两种情况
    5. 如果是单边节点,直接返回节点的另外一边
    6. 如果是双边节点,则先找出右边最小的值,作为根节点,然后将删除最小值过后的右边的节点,作为根节点的右节点

    看下代码的实现:

     // 删除新节点,从根节点开始删除
        void delete(int data)
        {
            root = delete(root, data);
        }
    
        //递归删除节点
        Node delete(Node node, int data)
        {
            //如果节点为空,直接返回
            if (node == null)  return node;
    
            //遍历左右两边的节点
            if (data < node.data)
                node.left = delete(node.left, data);
            else if (data > root.data)
                node.right = delete(node.right, data);
    
            //如果节点匹配
            else
            {
                //如果是单边节点,直接返回其下面的节点
                if (node.left == null)
                    return node.right;
                else if (node.right == null)
                    return node.left;
    
                //如果是双边节点,则先找出右边最小的值,作为根节点,然后将删除最小值过后的右边的节点,作为根节点的右节点
                node.data = minValue(node.right);
    
                // 从右边删除最小的节点
                node.right = delete(node.right, node.data);
            }
            return node;
        }
    

    这里我们使用递归来实现的删除双边节点,大家可以考虑一下有没有其他的方式来删除呢?

    本文的代码地址:

    learn-algorithm

    本文收录于 www.flydean.com

    最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

    欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!

  • 相关阅读:
    百度之星2019 初赛一 题解
    [NOI2019]弹跳(KD-Tree/四分树/线段树套平衡树 优化建图+Dijkstra)
    [BZOJ2157]旅游(树链剖分/LCT)
    [BZOJ3230]相似子串(后缀数组)
    回文树/回文自动机(PAM)学习笔记
    [CF30E]Tricky and Clever Password(KMP+manacher)
    APIO2019题解
    代码大全
    算法竞赛常用资料整理
    手动修复 Flash CS3 简中化不完全问题
  • 原文地址:https://www.cnblogs.com/flydean/p/15661234.html
Copyright © 2020-2023  润新知