• Leetcode 39 40 216 Combination Sum I II III


    Combination Sum

    Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.

    The same repeated number may be chosen from C unlimited number of times.

    Note:

    • All numbers (including target) will be positive integers.
    • Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
    • The solution set must not contain duplicate combinations.

    For example, given candidate set 2,3,6,7 and target 7
    A solution set is: 
    [7] 
    [2, 2, 3] 

    思路:需要回溯的思想。对数组里面的每个数,用递归的方式叠加,每次递归将和sum与target作比较,若相等则加入结果list,sum>target则舍弃,并返回false,若sum<target,则继续进行递归。第一种sum=target的情况下,在加入结果list后,要将当前一种结果最后加入的元素remove,并继续对后面的元素进行递归;在第二种sum>target的情况下,则需要将当前结果的最后加入的两个元素remove,并继续对后面的元素进行递归。第三种情况sum<target,无需删除直接递归。

    注意元素可以重复,所以下一次递归是从当前递归元素开始。

    public class S039 {
        //backtracking--回溯算法
        public List<List<Integer>> combinationSum(int[] candidates, int target) { 
            List<List<Integer>> result = new ArrayList<List<Integer>>();
            List<Integer> temp = new ArrayList<Integer>();
            Arrays.sort(candidates);//很关键的一步
            findConbination(result,temp,0,0,target,candidates);
            return result;
        }
        public boolean findConbination(List<List<Integer>> result,List<Integer> temp,int sum,int level,int target,int[] candidates){
            if(sum == target){
                result.add(new ArrayList<>(temp)); //从内存复制,防止后面的改变对其发生影响
                return true;
            }else if(sum>target){
                return false;
            }else{
                for(int i = level;i<candidates.length;i++){//思考level参数的作用
                    temp.add(candidates[i]);
    //                sum += candidates[i];思考这一行注释掉并把sum的增加加在下一行参数里面的原因
                    if(!findConbination(result,temp,sum+candidates[i],i,target,candidates)){//i表示下一次递归从当前递归的位置开始
                        i = candidates.length;
                    }
                    temp.remove(temp.size()-1);
                }
                return true;
            }
        }
    }

    Combination Sum II

    Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.

    Each number in C may only be used once in the combination.

    Note:

    • All numbers (including target) will be positive integers.
    • Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
    • The solution set must not contain duplicate combinations.

    For example, given candidate set 10,1,2,7,6,1,5 and target 8
    A solution set is: 
    [1, 7] 
    [1, 2, 5] 
    [2, 6] 
    [1, 1, 6] 

    思路:与前一题的不同之处在于结果要求同一位置的元素只能出现一次,但是值相同在数组中位置不同的元素可以同时出现。与前一题的不同就是下一次递归都是从当前递归的下一个元素开始。另外测试集不相同,前一题的测试集中不会出现同一数组中有相同的元素,所以不用额外去重。这一题同一数组会出现相同元素,所以得在元素向前移的时候跳过相同的元素来进行去重。

    public class S040 {
        public List<List<Integer>> combinationSum2(int[] candidates, int target) {
            Arrays.sort(candidates);
            List<List<Integer>> rets = new ArrayList<List<Integer>>();
            List<Integer> ret = new ArrayList<Integer>();
            find(candidates,0,0,target,rets,ret);
            return rets;
        }
        public static boolean find(int[] candidates,int sum,int level,int target,List<List<Integer>> rets,List<Integer> ret){
            if(sum == target){
                rets.add(new ArrayList<>(ret));
                return true;
            }else if(sum > target){
                return false;
            }else{
                for(int i = level;i<candidates.length;i++){
                    ret.add(candidates[i]);
                    if(!find(candidates,sum+candidates[i],i+1,target,rets,ret)){//i+1表明下一次递归从当前递归的下一位元素开始
                        i = candidates.length;
                    }
                    //去重
                    while(i<candidates.length-1&&ret.get(ret.size()-1) == candidates[i+1]){
                        i++;
                    }
                    ret.remove(ret.size()-1);
                }
                return true;
            }
        }
    }

    Combination Sum III

    Find all possible combinations of k numbers that add up to a number n, given that only numbers from 1 to 9 can be used and each combination should be a unique set of numbers.

    Ensure that numbers within the set are sorted in ascending order.


    Example 1:

    Input: k = 3, n = 7

    Output:

    [[1,2,4]]
    

    Example 2:

    Input: k = 3, n = 9

    Output:

    [[1,2,6], [1,3,5], [2,3,4]]


    思路:这一题还是参照了前两题,相当于把前两题中的candidates数组变为nums={1,2,3,4,5,6,7,8,9},然后再在每一次比较结果时加上结果list大小的比较,当前list的大小不超过k。
    也不用额外去重。
    public class S216 {
        public List<List<Integer>> combinationSum3(int k, int n) {
            List<List<Integer>> result = new ArrayList<List<Integer>>();
            List<Integer> temp = new ArrayList<Integer>();
            if(n<k*(k+1)/2||n>45||k>9||k<1){
                return result;
            }
            int[] nums = {1,2,3,4,5,6,7,8,9};
            find(nums,k,n,0,0,result,temp);
            return result;
        }
        public static boolean find(int[] nums,int k, int n, int sum,int level,
                List<List<Integer>> result,List<Integer> temp){
            if(temp.size()>k||sum>n){
                return false;
            }else if(sum == n&&temp.size() == k){
                result.add(new ArrayList<>(temp));
                return true;
            }else{
                for(int i = level;i<nums.length;i++){
                    temp.add(nums[i]);
                    if(!find(nums,k,n,sum+nums[i],i+1,result,temp)){
                        i = nums.length;
                    }
                    temp.remove(temp.size()-1);
                }
                return true;
            }
        }
    }
     


  • 相关阅读:
    nodejs ---day01
    面向对象
    面向对象
    面向对象
    webpack
    webpack
    webpack
    模块化 (ESM) --- day02
    模块化 --- day01
    轮播图(淡入淡出切换)
  • 原文地址:https://www.cnblogs.com/fisherinbox/p/5361173.html
Copyright © 2020-2023  润新知