• 二叉树


    1. 树的概念

    1.1 满二叉树、完全二叉树、二叉搜索树

     满二叉树:高度为h,由2^h-1个节点构成的二叉树称为满二叉树;

     完全二叉树:完全二叉树是由满二叉树而引出来的,若设二叉树的深度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数(即1~h-1层为一个满二叉树),第 h 层所有的结点都连续集中在最左边,堆一般都是用完全二叉树实现的;

     二叉搜索树:若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;

    1.2 前驱节点、后继节点

     前驱节点:对一棵二叉树进行中序遍历,遍历后的顺序,当前节点的前一个节点为该节点的前驱节点;

     后继节点:对一棵二叉树进行中序遍历,遍历后的顺序,当前节点的后一个节点为该节点的后继节点;

    1.3 二叉树性质

    2. 二叉树遍历

    2.1 前序遍历

        //递归
        private void preOrderR(TreeNode head) {
            if (head == null) {
                return;
            }
            System.out.print(head.val + " ");
            preOrderR(head.left);
            preOrderR(head.right);
        }
    
        // 先入栈右子节点 再入栈左子节点
        private void preOrder(TreeNode head) {
            Deque<TreeNode> stack = new LinkedList<>();
            stack.push(head);
            while (!stack.isEmpty()) {
                System.out.print(head.val + " ");
                TreeNode node = stack.pop();
                if (node.right != null) {
                    stack.push(node.right);
                }
                if (node.left != null) {
                    stack.push(node.left);
                }
            }
            System.out.println();
        }

    2.2 中序遍历

        //递归
        private void inOrderR(TreeNode head) {
            if (head == null) {
                return;
            }
            preOrderR(head.left);
         System.out.print(head.val + " "); preOrderR(head.right); } private void inOrder(TreeNode head) { System.out.println("===in-order==="); if (head == null) { return; } Deque<TreeNode> stack = new LinkedList<>(); TreeNode node = head; while (!stack.isEmpty() || node != null) { if (node != null) { // 压入二叉树左斜边 stack.push(node); node = node.left; } else { node = stack.pop(); System.out.println(node.val + " "); node = node.right; } } System.out.println(); }

    2.3 后序遍历

        //递归
        private void postOrderR(TreeNode head) {
            if (head == null) {
                return;
            }
            preOrderR(head.left);
            preOrderR(head.right);
         System.out.print(head.val + " "); } private void postOrder(TreeNode head) { System.out.println("===post-order==="); if (head == null) { return; } Deque<TreeNode> stack = new LinkedList<>(); Deque<TreeNode> stack2 = new LinkedList<>(); stack.push(head); TreeNode node; while (!stack.isEmpty()) { // pop and stack store node = stack.pop(); stack2.push(node); // push left node if (node.left != null) { stack.push(node.left); } if (node.right != null) { stack.push(node.right); } } while (!stack2.isEmpty()) { System.out.print(stack2.pop().val + " "); } }

    2.4 广度遍历

    public void level(TreeNode head) {
            if (head == null) {
                return;
            }
            Deque<TreeNode> queue = new LinkedList<>();
            queue.offer(head);
            while (!queue.isEmpty()) {
                TreeNode cur = queue.poll();
                System.out.println(cur.val + " ");
                if (cur.left != null) {
                    queue.offer(cur.left);
                }
                if (cur.right != null) {
                    queue.offer(cur.right);
                }
            }
        }
    

     基于上述的按层遍历二叉树代码,现有如下题目:求二叉树最大宽度 https://leetcode-cn.com/problems/maximum-width-of-binary-tree/

     

  • 相关阅读:
    vue+element实现图片上传
    react----Hooks的基本使用
    js知识点大杂烩
    vue面试题(一)
    从一个字符串中找出重复次数最多的字符?
    百度搜索
    js--拖拽
    js循环嵌套,打印图形
    js--sort()排序
    闰秒调整扫盲
  • 原文地址:https://www.cnblogs.com/ffopen/p/15335912.html
Copyright © 2020-2023  润新知