• UVALive


    题目链接:

    http://acm.hust.edu.cn/vjudge/problem/356788

    Airports

    Time Limit: 3000MS
    #### 问题描述 > An airline company offers flights out of n airports, conveniently labeled > from 1 to n. The flight time tij from airport i to airport j is known for > every i and j. It may be the case that tij ̸= tji, due to things like wind > or geography. Upon landing at a given airport, a plane must be inspected > before it can be flown again. This inspection time pi > is dependent only > on the airport at which the inspection is taking place and not where the > previous flight may have originated. > Given a set of m flights that the airline company must provide, determine > the minimum number of planes that the company needs to purchase. The airline may add > unscheduled flights to move the airplanes around if that would reduce the total number of planes > needed. #### 输入 > The input file contains several test cases, each of them as described below. > The first line of input contains two space-separated integers n and m (1 ≤ n, m ≤ 500). The next > line contains n space-separated integers p1, . . . , pn (0 ≤ pi ≤ 106 > ). > Each of the next n lines contains n space-separated integers. The j-th integer in line i + 2 is tij > (0 ≤ tij ≤ 106 > ). It is guaranteed that tii = 0 for all i. However, it may be the case that tij ̸= tji when > i ̸= j. > Each of the next m lines contains three space-separated integers, si > , fi > , and ti (1 ≤ si > , fi ≤ n, > si ̸= fi > , 1 ≤ ti ≤ 106 > ), indicating that the airline company must provide a flight that flies out from > airport si at exactly time ti > , heading directly to airport fi > . #### 输出 > For each test case, print, on a single line, a single integer indicating the minimum number of planes the > airline company must purchase in order to provide the m requested flights. #### 样例 > **sample input** > 2 2 > 1 1 > 0 1 > 1 0 > 1 2 1 > 2 1 1 > 2 2 > 1 1 > 0 1 > 1 0 > 1 2 1 > 2 1 3 > 5 5 > 72 54 71 94 23 > 0 443 912 226 714 > 18 0 776 347 810 > 707 60 0 48 923 > 933 373 881 0 329 > 39 511 151 364 0 > 4 2 174 > 2 1 583 > 4 3 151 > 1 4 841 > 4 3 993 > > **sample output** > 2 > 1 > 3

    题意

    给你一个有向图,有边权和点权,边权代表从u飞到v所需时间,点权p[i]表示如果飞机到达i点之后还要再起飞,那就需要p[i]时间的修整时间。
    现在给你m趟航班要飞,每趟航班(u,v,t)表示从u飞到v,并且在u点的起飞时间是t。现在问你用最少的飞机跑完所有的航班。

    题解

    我们对每趟航班建一个点,如果飞机跑完一趟航班之后还能去跑另一趟航班,我们就连一条有向边,明显这样建出来的图是偏序图,也就是DAG,然后我们对这图跑一遍最小路径覆盖就可以了。

    代码

    #include<map>
    #include<queue>
    #include<vector>
    #include<cstdio>
    #include<cstring>
    #include<string>
    #include<iostream>
    #include<algorithm>
    #define X first
    #define Y second
    #define mkp make_pair
    #define lson (o<<1)
    #define rson ((o<<1)|1)
    #define M (l+(r-l)/2)
    #define bug(a) cout<<#a<<" = "<<a<<endl 
    
    using namespace std;
    
    typedef __int64 LL;
    
    const int maxn=555;
    const int INF=0x3f3f3f3f;
    
    int n,m;
    int p[maxn];
    int mat[maxn][maxn],f[maxn][maxn];
    
    vector<int> G[maxn];
    pair<int,int> a[maxn],b[maxn];
    
    int vis[maxn],lef[maxn];
    int match(int u){
    	for(int i=0;i<G[u].size();i++){
    		int v=G[u][i];
    		if(!vis[v]){
    			vis[v]=1;
    			if(lef[v]==-1||match(lef[v])){
    				lef[v]=u;
    				return true;
    			}
    		}
    	}
    	return false;
    }
    
    int main() {
    	scanf("%d%d",&n,&m);
    	for(int i=1;i<=n;i++) scanf("%d",&p[i]); 
    	//把点权直接合并到边权上
    	for(int i=1;i<=n;i++){
    		for(int j=1;j<=n;j++){
    			scanf("%d",&mat[i][j]);
    			if(i!=j) mat[i][j]+=p[j];
    		}
    	}
    	
    	//预处理出最短路,用于判断两趟航班能不能用一架飞机跑
    	memcpy(f,mat,sizeof(mat));
    	for(int k=1;k<=n;k++){
    		for(int i=1;i<=n;i++){
    			for(int j=1;j<=n;j++){
    				f[i][j]=min(f[i][j],f[i][k]+f[k][j]);
    			}
    		}
    	}
    	
    	//存每趟航班的两个属性
    	for(int i=1;i<=m;i++){
    		int u,v,t;
    		scanf("%d%d%d",&u,&v,&t);
    		a[i]=mkp(u,t);
    		b[i]=mkp(v,t+mat[u][v]);
    	}
    	
    	//判断飞机跑完航班i,能不能继续飞航班j
    	for(int i=1;i<=m;i++){
    		for(int j=1;j<=m;j++){
    			if(i!=j&&b[i].Y+f[b[i].X][a[j].X]<=a[j].Y){
    				G[i].push_back(j);
    			}
    		}
    	}
    	
    	//DAG的最小路径覆盖
    	memset(lef,-1,sizeof(lef));
    	int ans=0;
    	for(int i=1;i<=m;i++){
    		memset(vis,0,sizeof(vis));
    		if(match(i)) ans++;
    	}
    	ans=m-ans;
    	printf("%d
    ",ans);
    	return 0;
    }
    

    Notes

    最小路径覆盖只能跑没有交叉的,比如1->2->3,4->2->5,这样有交叉的就会出问题,不过可以在建图的时候处理出1->2->3,4->5这样的东西,否则会出问题。

  • 相关阅读:
    记一次Cloudera中页面监控失效问题
    spark on yarn 动态资源分配报错的解决:org.apache.hadoop.yarn.exceptions.InvalidAuxServiceException: The auxService:spark_shuffle does not exist
    sparkOnYarn报错org.apache.hadoop.fs.FSDataInputStream
    记一次newApiHadoopRdd查询数据不一致问题
    记一次sparkOnyarn错误:java.lang.UnsatisfiedLinkError
    线程八大基础核心二(启动线程)
    线程八大基础核心一(创建线程的方式)
    非常时期,做好一个普通人
    哈希算法(应用场景)
    查找算法(二分查找)
  • 原文地址:https://www.cnblogs.com/fenice/p/5743046.html
Copyright © 2020-2023  润新知