• 【bzoj1922】[Sdoi2010]大陆争霸


    信仰斯普林·布拉泽的克里斯国教徒。 幻想历 8012年 3月2日,位于杰森国东部小镇神谕镇的克里斯国教徒发动 起义。 幻想历 8012年 3月7日,神谕镇的起义被杰森国大军以残酷手段镇压。 幻想历 8012年 3月8日,克里斯国对杰森国宣战。由数十万大军组成的克 里斯军团开至两国边境,与杰森军团对峙。 幻想历 8012年 4月,克里斯军团攻破杰森军团防线进入神谕镇,该镇幸存 的克里斯国教徒得到解放。 战争随后进入胶着状态,旷日持久。战况惨烈,一时间枪林弹雨,硝烟弥漫, 民不聊生。 幻想历 8012年 5月12日深夜,斯普林·布拉泽降下神谕:“Trust me, earn eternal life.”克里斯军团士气大增。作为克里斯军团的主帅,你决定利用这一机 会发动奇袭,一举击败杰森国。具体地说,杰森国有 N 个城市,由 M条单向道 路连接。神谕镇是城市 1而杰森国的首都是城市 N。你只需摧毁位于杰森国首都 的曾·布拉泽大神殿,杰森国的信仰,军队还有一切就都会土崩瓦解,灰飞烟灭。 为了尽量减小己方的消耗,你决定使用自爆机器人完成这一任务。唯一的困 难是,杰森国的一部分城市有结界保护,不破坏掉结界就无法进入城市。而每个 城市的结界都是由分布在其他城市中的一些结界发生器维持的,如果想进入某个 城市,你就必须破坏掉维持这个城市结界的所有结界发生器。 现在你有无限多的自爆机器人,一旦进入了某个城市,自爆机器人可以瞬间 引爆,破坏一个目标(结界发生器,或是杰森国大神殿),当然机器人本身也会 一起被破坏。你需要知道:摧毁杰森国所需的最短时间。

    Input

    第一行两个正整数 N, M。 接下来 M行,每行三个正整数 ui, vi, wi,表示有一条从城市ui到城市 vi的单 向道路,自爆机器人通过这条道路需要 wi的时间。 之后 N 行,每行描述一个城市。首先是一个正整数 li,维持这个城市结界所 使用的结界发生器数目。之后li个1~N 之间的城市编号,表示每个结界发生器的 位置。如果 Li = 0,则说明该城市没有结界保护,保证L1 = 0 。

    Output

    仅包含一个正整数 ,击败杰森国所需的最短时间。

    Sample Input

    6 6
    1 2 1
    1 4 3
    2 3 1
    2 5 2
    4 6 2
    5 3 2
    0
    0
    0
    1 3
    0
    2 3 5

    Sample Output

    5

    HINT

    对于 20%的数据,满足 N≤15,M≤50;
    对于 50%的数据,满足 N≤500,M≤6,000;
    对于 100%的数据,满足 N≤3,000,M≤70,000,1≤wi≤108

    输入数据保证一定有解,且不会存在维持某个城市结界的结界发生器在这个
    城市内部。
    连接两个城市的道路可能不止一条, 也可能存在一个城市自己到自己的道路。

    题解

    带限制的最短路。。。

    设d1[x],d2[x]为城市x的到达时间,可进入时间

    max(d1[x],d2[x])为真实的进入时间

    d[x]记录城市x被多少个城市保护

    每次堆中取出一个真实进入时间最小的城市

    更新它所通往的城市的d1,保护城市的d2

    保护城市的d–

    若d=0,则可入堆

    复杂度(n+m)logn

     1 #include<cstdio>
     2 #include<cmath>
     3 #include<cstring>
     4 #include<iostream>
     5 #include<algorithm>
     6 #include<cstdlib>
     7 #include<queue>
     8 
     9 #define ll long long
    10 #define fzy pair<int,int>
    11 #define mod 1000000007
    12 #define inf 100000000
    13 #define N 3007
    14 #define M 70007
    15 
    16 using namespace std;
    17 int n,m;
    18 int cnt,head[N],rea[M],next[M],val[M];
    19 int d1[N],d2[N],d[N];
    20 int l[N],a[N][N];
    21 bool vis[N];
    22 
    23 void add(int u,int v,int fee)
    24 {
    25     next[++cnt]=head[u];
    26     head[u]=cnt;
    27     rea[cnt]=v;
    28     val[cnt]=fee;
    29 }
    30 void Dijkstra()
    31 {
    32     priority_queue<fzy,vector<fzy>,greater<fzy> >q;
    33     
    34     memset(d1,127/3,sizeof(d1));
    35     q.push(make_pair(0,1));
    36     d1[1]=0;
    37     
    38     while(!q.empty())
    39     {
    40         int u=q.top().second;q.pop();
    41         if(vis[u])continue;vis[u]=1;
    42         int end=max(d1[u],d2[u]);
    43         for(int i=head[u];i!=-1;i=next[i])
    44         {
    45             int v=rea[i],fee=val[i];
    46             if(end+fee<d1[v])
    47             {
    48                 d1[v]=end+fee;
    49                 int tmp=max(d1[v],d2[v]);
    50                 if(!d[v])q.push(make_pair(tmp,v));
    51             }
    52         }
    53         for(int i=1;i<=l[u];i++)
    54         {
    55             int v=a[u][i];
    56             d[v]--;d2[v]=max(d2[v],end);
    57             int tmp=max(d1[v],d2[v]);
    58             if(!d[v])q.push(make_pair(tmp,v));
    59         }
    60     }
    61 }
    62 int main()
    63 {
    64     memset(head,-1,sizeof(head));
    65     scanf("%d%d",&n,&m);
    66     for(int i=1,u,v,w;i<=m;i++)
    67     {
    68         scanf("%d%d%d",&u,&v,&w);
    69         if(u!=v) add(u,v,w);
    70     }
    71     for(int i=1;i<=n;i++)
    72     {
    73         scanf("%d",&d[i]);
    74         for(int j=1,u;j<=d[i];j++)
    75         {
    76             scanf("%d",&u);
    77             a[u][++l[u]]=i;
    78         }
    79     }
    80     
    81     Dijkstra();
    82     
    83     int ans=max(d1[n],d2[n]);
    84     printf("%d
    ",ans);
    85 }
  • 相关阅读:
    简单介绍ps切片工具切图技巧
    ps选区工具应用
    【Photoshop基本概念知识】
    jQuery上传插件Uploadify使用详解
    PS非主流头发效果
    C#正则表达式整理备忘
    C#中利用正则表达式实现字符串搜索
    PS快捷键大全
    PS操作速查
    Photoshop CS2 菜单入门介绍
  • 原文地址:https://www.cnblogs.com/fengzhiyuan/p/7766363.html
Copyright © 2020-2023  润新知