• tensorflow中四种不同交叉熵函数tf.nn.softmax_cross_entropy_with_logits()


    Tensorflow中的交叉熵函数
    tensorflow中自带四种交叉熵函数,可以轻松的实现交叉熵的计算。

    tf.nn.softmax_cross_entropy_with_logits()
    tf.nn.sparse_softmax_cross_entropy_with_logits()
    tf.nn.sigmoid_cross_entropy_with_logits()
    tf.nn.weighted_cross_entropy_with_logits()
    注意:tensorflow交叉熵计算函数输入中的logits都不是softmax或sigmoid的输出,而是softmax或sigmoid函数的输入,因为它在函数内部进行sigmoid或softmax操作。而且不能在交叉熵函数前进行softmax或sigmoid,会导致计算会出错。

    一、sigmoid交叉熵
    tf.nn.sigmoid_cross_entropy_with_logits(_sentinel=None,labels=None, logits=None, name=None)
    argument:   
    _sentinel:本质上是不用的参数,不用填
    logits:计算的输出,注意是为使用softmax或sigmoid的,维度一般是[batch_size, num_classes] ,单样本是[num_classes]。数据类型(type)是float32或float64;
    labels:和logits具有相同的type(float)和shape的张量(tensor),即数据类型和张量维度都一致。
    name:操作的名字,可填可不填
    output:
    loss,shape:[batch_size,num_classes]

    注意:它对于输入的logits先通过sigmoid函数计算,再计算它们的交叉熵,但是它对交叉熵的计算方式进行了优化,使得结果不至于溢出。output不是一个数,而是一个batch中每个样本的loss,所以一般配合tf.reduce_mea(loss)使用。

    例子:

    import tensorflow as tf
    import numpy as np
     
    def sigmoid(x):
        return 1.0 / (1 + np.exp(-x))
     
    # 5个样本三分类问题,且一个样本可以同时拥有多类
    y = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 0], [0, 1, 0]])
     
    logits = np.array([[12, 3, 2], [3, 10, 1], [1, 2, 5], [4, 6.5, 1.2], [3, 6, 1]])
    y_pred = sigmoid(logits)
    E1 = -y * np.log(y_pred) - (1 - y) * np.log(1 - y_pred)
    print('按计算公式计算的结果:
    ',E1)  # 按计算公式计算的结果
    sess = tf.Session()
    y = np.array(y).astype(np.float64)  # labels是float64的数据类型
    E2 = sess.run(tf.nn.sigmoid_cross_entropy_with_logits(labels=y, logits=logits))
    print('tf计算的结果:
    ',E2)
    # 输出的E1,E2结果相同

    二、softmax交叉熵
    tf.nn.softmax_cross_entropy_with_logits(_sentinel=None, labels=None, logits=None, dim=-1, name=None)
    argument:
    _sentinel:本质上是不用的参数,不用填
    logits:计算的输出,注意是为使用softmax或sigmoid的,维度一般是[batch_size, num_classes] ,单样本是[num_classes]。数据类型(type)是float32或float64;
    labels:和logits具有相同的type(float)和shape的张量(tensor),即数据类型和张量维度都一致。
    name:操作的名字,可填可不填
    output:
    loss,shape:[batch_size]

    其他同上

    例子:

    import tensorflow as tf
    import numpy as np
     
    def softmax(x):
        sum_raw = np.sum(np.exp(x), axis=-1)
        x1 = np.ones(np.shape(x))
        for i in range(np.shape(x)[0]):
            x1[i] = np.exp(x[i]) / sum_raw[i]
        return x1
     
     
    y = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 0, 0], [0, 1, 0]])  # 每一行只有一个1
    logits = np.array([[12, 3, 2], [3, 10, 1], [1, 2, 5], [4, 6.5, 1.2], [3, 6, 1]])
    y_pred = softmax(logits)
    E1 = -np.sum(y * np.log(y_pred), -1)
     
    sess = tf.Session()
    y = np.array(y).astype(np.float64)
    E2 = sess.run(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=logits))
     
    print('按计算公式计算的结果:
    ', E1)  # 按计算公式计算的结果
    print('tf计算的结果:
    ', E2)
    # 输出的E1,E2结果相同

    三、sparse_softmax交叉熵
    tf.nn.sparse_softmax_cross_entropy_with_logits(_sentinel=None,labels=None,logits=None, name=None)
    argument:
    _sentinel:本质上是不用的参数,不用填
    logits:一个数据类型(type)是float32或float64;
    shape:[batch_size,num_classes]

    labels: shape为[batch_size],labels[i]是{0,1,2,……,num_classes-1}的一个索引, type为int32或int64,说白了就是当使用这个函数时,tf自动将原来的类别索引转换成one_hot形式,然后与label表示的one_hot向量比较,计算交叉熵。

    name: 操作的名字,可填可不填
    output:

    loss,shape:[batch_size]

    例子:

    import tensorflow as tf
     
    # 假设只有三个类,分别编号0,1,2,labels就可以直接输入下面的向量,不用转换与logits一致的维度
    labels = [0,1,2]
     
    logits = [[2,0.5,1],
              [0.1,1,3],
              [3.1,4,2]]
     
    logits_scaled = tf.nn.softmax(logits)
    result = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, logits=logits)
     
    with tf.Session() as sess:
        print(sess.run(result))

    四、weighted交叉熵
    tf.nn.weighted_cross_entropy_with_logits(labels,logits, pos_weight, name=None)
    计算具有权重的sigmoid交叉熵sigmoid_cross_entropy_with_logits()
    argument:
    _sentinel:本质上是不用的参数,不用填
    logits:一个数据类型(type)是float32或float64;
    shape:[batch_size,num_classes],单样本是[num_classes]
    labels:和logits具有相同的type(float)和shape的张量(tensor),
    pos_weight:正样本的一个系数
    name:操作的名字,可填可不填
    output:
    loss,shape:[batch_size,num_classes]



    感谢:https://blog.csdn.net/qq_35203425/article/details/7977345

  • 相关阅读:
    Android 禁用以及捕捉home键
    android中正确导入第三方jar包
    使用SharedPreferences进行数据存储
    tomcat不安全因素
    spring边边角角
    宏定义
    C++变量对比java变量所占内存
    结构指针的分析
    对结构使用指针
    什么是程序文件?
  • 原文地址:https://www.cnblogs.com/fclbky/p/12637091.html
Copyright © 2020-2023  润新知