• [TJOI2009] 猜数字


    洛谷 P3868 传送门

    CRT裸题......

    我为了复习数论,用CRT和EXCRT分别把这道题写了一遍QAQ

    CRT:

     1 #include<cstdio>
     2 #define ll long long
     3 
     4 int n;
     5 ll bp=1,ans;
     6 ll aa[15],bb[15];
     7 
     8 void exgcd(ll a,ll b,ll &x,ll &y)
     9 {
    10     if(!b)
    11     {
    12         x=1,y=0;
    13         return;
    14     }
    15     exgcd(b,a%b,y,x); 
    16     y-=a/b*x;
    17 }
    18 
    19 ll mul(ll a,ll b,ll mod)
    20 {
    21     ll ret=0;
    22     while(b)
    23     {
    24         if(b&1)ret=(ret+a)%mod;
    25         a=(a+a)%mod;
    26         b>>=1;
    27     }
    28     return ret;
    29 }
    30 
    31 int main()
    32 {
    33     scanf("%d",&n);
    34     for(int i=1;i<=n;i++)scanf("%lld",&aa[i]);
    35     for(int i=1;i<=n;i++)scanf("%lld",&bb[i]),bp=bp*bb[i];
    36     for(int i=1;i<=n;i++)
    37     {
    38         aa[i]=(aa[i]%bb[i]+bb[i])%bb[i];
    39         ll bt=bp/bb[i];
    40         //bt*inv+bb[i]*k=1
    41         ll inv,k;
    42         exgcd(bt,bb[i],inv,k);
    43         inv=(inv%bb[i]+bb[i])%bb[i];
    44         ans=(ans+mul(mul(bt,inv,bp),aa[i],bp))%bp;
    45     }
    46     printf("%lld",ans);
    47     return 0;
    48 }
    CRT

    EXCRT:

     1 #include<cstdio>
     2 #define ll long long
     3 
     4 int n;
     5 ll aa[15],bb[15];
     6 ll bp=1,ans;
     7 
     8 ll exgcd(ll a,ll b,ll &x,ll &y)
     9 {
    10     if(!b)
    11     {
    12         x=1,y=0;
    13         return a;
    14     }
    15     ll ret=exgcd(b,a%b,y,x);
    16     y-=a/b*x;
    17     return ret;
    18 }
    19 
    20 ll mul(ll a,ll b,ll mod)
    21 {
    22     ll ret=0;
    23     while(b)
    24     {
    25         if(b&1)ret=(ret+a)%mod;
    26         a=(a+a)%mod;
    27         b>>=1;
    28     }
    29     return ret;
    30 }
    31 
    32 int main()
    33 {
    34     scanf("%d",&n);
    35     for(int i=1;i<=n;i++)scanf("%lld",&aa[i]);
    36     for(int i=1;i<=n;i++)scanf("%lld",&bb[i]);
    37     for(int i=1;i<=n;i++)
    38     {
    39         ll c=((aa[i]-ans)%bb[i]+bb[i])%bb[i];
    40         ll k,kk;
    41         ll g=exgcd(bp,bb[i],k,kk);
    42         c/=g,bb[i]/=g;
    43         k=mul(k,c,bb[i]);
    44         ans=ans+k*bp;
    45         bp=bp*bb[i];
    46         ans=(ans%bp+bp)%bp;
    47     }
    48     printf("%lld",ans);
    49     return 0;
    50 }
    EXCRT
  • 相关阅读:
    day89
    day88
    day87
    day86
    day85
    day84
    day83
    Maven仓库汇总
    [转载]AngularJS入门教程04:双向绑定
    [转载]AngularJS入门教程03:迭代器
  • 原文地址:https://www.cnblogs.com/eternhope/p/9798924.html
Copyright © 2020-2023  润新知