• 机器学习(二十三)— L0、L1、L2正则化区别


    1、概念 

      L0正则化的值是模型参数中非零参数的个数。

      L1正则化表示各个参数绝对值之和。

      L2正则化标识各个参数的平方的和的开方值。

    2、问题 

      1)实现参数的稀疏有什么好处吗?

      一个好处是可以简化模型,避免过拟合。因为一个模型中真正重要的参数可能并不多,如果考虑所有的参数起作用,那么对训练数据可以预测的很好,但是对测试数据就只能呵呵了。另一个好处是参数变少可以使整个模型获得更好的可解释性。

      2)参数值越小代表模型越简单吗?

      是的。为什么参数越小,说明模型越简单呢,这是因为越复杂的模型,越是会尝试对所有的样本进行拟合,甚至包括一些异常样本点,这就容易造成在较小的区间里预测值产生较大的波动,这种较大的波动也反映了在这个区间里的导数很大,而只有较大的参数值才能产生较大的导数。因此复杂的模型,其参数值会比较大,但如果参数足够小,数据偏移得多一点也不会对结果造成什么影响,专业一点的说法是『抗扰动能力强』。

    3、L0正则化

      根据上面的讨论,稀疏的参数可以防止过拟合,因此用L0范数(非零参数的个数)来做正则化项是可以防止过拟合的。

    从直观上看,利用非零参数的个数,可以很好的来选择特征,实现特征稀疏的效果,具体操作时选择参数非零的特征即可。但因为L0正则化很难求解,是个NP难问题,因此一般采用L1正则化。L1正则化是L0正则化的最优凸近似,比L0容易求解,并且也可以实现稀疏的效果。

    4、L1正则化

      L1正则化在实际中往往替代L0正则化,来防止过拟合。在江湖中也人称Lasso。

      L1正则化之所以可以防止过拟合,是因为L1范数就是各个参数的绝对值相加得到的,我们前面讨论了,参数值大小和模型复杂度是成正比的。因此复杂的模型,其L1范数就大,最终导致损失函数就大,说明这个模型就不够好。

    5、L2正则化

      L2正则化可以防止过拟合的原因和L1正则化一样,只是形式不太一样。

      L2范数是各参数的平方和再求平方根,我们让L2范数的正则项最小,可以使W的每个元素都很小,都接近于0。但与L1范数不一样的是,它不会是每个元素为0,而只是接近于0。 
      越小的参数说明模型越简单,越简单的模型越不容易产生过拟合现象。

      L2正则化江湖人称Ridge,也称“岭回归”

    6、L1和L2对比 
                     

      可以看到,L1-ball 与L2-ball 的不同就在于L1在和每个坐标轴相交的地方都有“角”出现,有很大的几率等高线会和L1-ball在四个角,也就是坐标轴上相遇,坐标轴上就可以产生稀疏,因为某一维可以表示为0。而等高线与L2-ball在坐标轴上相遇的概率就比较小了。

      总结: 

      正则化参数等价于对参数引入 先验分布,使得 模型复杂度 变小(缩小解空间),对于噪声以及 outliers 的鲁棒性增强(泛化能力)。

      (1)L1会趋向于产生少量的特征,而其他的特征都是0,而L2会选择更多的特征,这些特征都会接近于0。 

      (2)L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择,(在推荐预测点击率时,由于数据的维度可能非常高,L1正则化因为能产生稀疏解,使用的更为广泛一些。)

          L2正则化可以防止模型过拟合(overfitting);一定程度上,L1也可以防止过拟合。

      (3)在所有特征中只有少数特征起重要作用的情况下,选择L1比较合适,因为它能自动选择特征。而如果所有特征中,大部分特征都能起作用,而且起的作用很平均,那么使用L2也许更合适。

      (4)在面对两个向量之间的差异时,L2比L1更加不能容忍这些差异。也就是说,相对于1个巨大的差异,L2距离更倾向于接受多个中等程度的差异。L1和L2都是在p-norm常用的特殊形式。

      (5)L1和L2正则先验分别服从什么分布,L1是拉普拉斯分布,L2是高斯分布。

  • 相关阅读:
    Oracle面试题目及解答
    java -jar Incompatible argument to function
    plsql 查询到别的用户下面的表
    redis数据类型[string 、list 、 set 、sorted set 、hash]
    redis-cli 常用命令
    js判断浏览器,包括Edge浏览器
    HTMl5的sessionStorage和localStorage
    JS实现密码加密
    sprintf.js
    js-crc32
  • 原文地址:https://www.cnblogs.com/eilearn/p/8990077.html
Copyright © 2020-2023  润新知