• Tree Restoring


    Tree Restoring


    Time limit : 2sec / Memory limit : 256MB

    Score : 700 points

    Problem Statement

    Aoki loves numerical sequences and trees.

    One day, Takahashi gave him an integer sequence of length Na1,a2,…,aN, which made him want to construct a tree.

    Aoki wants to construct a tree with N vertices numbered 1 through N, such that for each i=1,2,…,N, the distance between vertex i and the farthest vertex from it is ai, assuming that the length of each edge is 1.

    Determine whether such a tree exists.

    Constraints

    • 2≦N≦100
    • 1≦aiN−1

    Input

    The input is given from Standard Input in the following format:

    N
    a1 a2  aN
    

    Output

    If there exists a tree that satisfies the condition, print Possible. Otherwise, print Impossible.


    Sample Input 1

    5
    3 2 2 3 3
    

    Sample Output 1

    Possible
    

    The diagram above shows an example of a tree that satisfies the conditions. The red arrows show paths from each vertex to the farthest vertex from it.

    分析:对于一棵树来说,假设直径有两个端点a,b,那么任意一点到其他点最远距离必然是max(dist(p,a),dist(p,b)),

       那么根据直径来构树,以树直径为奇数举例,那么这条链上必然有偶数个点,且最远距离为k,k-1,...,(k+1)/2,(k+1)/2...,k-1,k;

       那么也就是不存在最远距小于(k+1)/2的点,且(k+1)/2有两个点,大于(k+1)/2的至少有2个;

       树直径为偶数时同理;

    代码:

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cmath>
    #include <algorithm>
    #include <climits>
    #include <cstring>
    #include <string>
    #include <set>
    #include <map>
    #include <queue>
    #include <stack>
    #include <vector>
    #include <list>
    #define rep(i,m,n) for(i=m;i<=n;i++)
    #define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
    #define mod 1000000007
    #define inf 0x3f3f3f3f
    #define vi vector<int>
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define ll long long
    #define pi acos(-1.0)
    #define pii pair<int,int>
    #define Lson L, mid, rt<<1
    #define Rson mid+1, R, rt<<1|1
    const int maxn=1e5+10;
    using namespace std;
    ll gcd(ll p,ll q){return q==0?p:gcd(q,p%q);}
    ll qpow(ll p,ll q){ll f=1;while(q){if(q&1)f=f*p;p=p*p;q>>=1;}return f;}
    int n,m,k,t;
    inline ll read()
    {
        ll x=0;int f=1;char ch=getchar();
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    int a[maxn],ma,vis[maxn];
    bool flag;
    int main()
    {
        int i,j;
        scanf("%d",&n);
        rep(i,1,n)scanf("%d",&a[i]),vis[a[i]]++,ma=max(ma,a[i]);
        if(ma%2==0)
        {
            rep(i,1,ma/2-1)if(vis[i])flag=true;
            rep(i,ma/2,ma)
            {
                if(i==ma/2)
                {
                    if(vis[i]!=1)flag=true;
                }
                else if(vis[i]<2)flag=true;
            }
        }
        else
        {
            rep(i,1,(ma+1)/2-1)if(vis[i])flag=true;
            rep(i,(ma+1)/2,ma)
            {
                if(i<(ma+1)/2&&vis[i])flag=true;
                if(i==(ma+1)/2)
                {
                    if(vis[i]!=2)flag=true;
                }
                else if(vis[i]<2)flag=true;
            }
        }
        if(flag)puts("Impossible");
        else puts("Possible");
        //system("Pause");
        return 0;
    }
  • 相关阅读:
    POJ--3164--Command Network【朱刘算法】最小树形图
    金典 SQL笔记(6)
    hdoj1106排序
    linux程序设计——运行SQL语句(第八章)
    iOS-UITextView-文本输入视图的使用
    HDU 5305 Friends(简单DFS)
    Android IntentService全然解析 当Service遇到Handler
    概要设计的要点
    DispatcherTimer
    原型模式
  • 原文地址:https://www.cnblogs.com/dyzll/p/5927546.html
Copyright © 2020-2023  润新知