题意:以辆赛车可以从x轴上任意点出发,他的水平速度允许他向每向上移动v个单位,就能向左或向右移动v/r个单位(也就是它的辐射范围是个等腰三角形)
现在赛车从x轴出发,问它在到达终点前能吃到的最多钻石。
析:那个v是怎么变那个是不变的。比例考虑每个钻石的向下辐射范围,并且将其投影到x轴上的两个点,(辐射范围与x轴的两个焦点),然后我们就把题目转化成了一个区间覆盖问题,
我们可以在每一个钻石求出一个覆盖范围,什么意思呢,既然水平速度 向左的最大值等于向右的最大值,那么肯定是一个等腰三角形了,只需要求出所有钻石在X轴上所有覆盖范围,求出
有多少个完全覆盖的钻石就是答案!
我们用x<y表示x区间被y区间覆盖,即求二维最长的上升子序列:a1<=a2<=...<=an。
我们按每个钻石的左端点排序,然后跑右端点的最长不下降子序列就可以了。由于数据比较大,用二分处理成nlogn的复杂度。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <functional> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <deque> #include <map> #include <cctype> #include <stack> #include <sstream> #include <cstdlib> using namespace std ; #include <ctime> typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 0x3f3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e5 + 5; const int mod = 1e9 + 7; const char *mark = "+-*"; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; int n, m; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } struct node{ LL x, y; bool operator < (const node &p)const{ return x > p.x || (x == p.x && y < p.y); } }; node a[maxn]; LL dp[maxn]; int DP(){ fill(dp, dp+n, LNF); for(int i = 0; i < n; ++i) *upper_bound(dp, dp+n, a[i].y) = a[i].y; return lower_bound(dp, dp+n, LNF) - dp; } int main(){ int r, h, w; while(scanf("%d %d %d %d", &n, &r, &w, &h) == 4){ for(int i = 0; i < n; ++i){ LL x, y; scanf("%lld %lld", &x, &y); a[i].x = r * x - y; a[i].y = r * x + y; } sort(a, a+n); int ans = DP(); printf("%d ", ans); } return 0; }