• 省选算法学习·一些数列相关的数学知识 [数学]


    数列求和

    等比数列:$S_n=a_1frac{1-q^n}{1-q}$

    这个玩意儿的应用在于算一些期望的时候,$n$因为无限循环会趋于$inf$,所以若$qle 1$,就会变成$S=frac{a_1}{1-q}$这样子

    等差数列:$S_n=na_1+frac{n(n-1)}{2}d=frac{n(a_1+a_n)}{2}$

    递推方程求数列通项公式

    基础的叠加、叠乘什么的不讲了

    待定系数(高考基础)

    Type 1

    $a_n=pa_{n-1}+q$

    把$q$分一点到左边来,变成$a_n+x=p(a_{n-1}+x)$

    其中有$(p-1)x=q$

    Type 2

    $a_n=pa_{n-1}+f(n)$

    实际上是Type 1的一般形式,只需要一样挪一点来左边就好了

    Type 3

    $a_n=pa_{n-1}^r(r eq 1,r eq 0)$

    两边同时取对数即可

    $log a_n=rlog a_{n-1}+log p$

    特征根(高考基础)

    Type 1

    $a_n=pa_{n-1}+qa_{n-2}$

    这种的典型例子就是斐波那契数列:$1,1,2,3,5,8,13,21......$

    对于这种数列,它的特征方程为$x^2-px-q=0$

    设其两解为$x_1,x_2$,则其通项公式为$a_n=Ax_1n+Bx_2n$的形式

    其中的$A,B$需要代入前两项解出来

    不动点(数竞基础)

    Type 1

    $a_n=frac{ra_{n-1}+s}{pa_{n-1}+q}$

    我们把数列看做离散的函数,考虑这个函数的不动点$x=frac{rx+s}{px+q}$,即$px^2+(q-r)x-s=0$

    设其两解为$x_1,x_2$,分两解相同和不同两种情况考虑:

    1. 两解相同,则有$frac{1}{a_n-x_1}=frac{1}{a_{n-1}-x_1}+frac{2p}{r+q}$

    2. 两解不同,则有$frac{a_n-x_1}{a_n-x_2}=frac{r-px_1}{r-px_2}frac{a_{n-1}-x_1}{a_{n-1}-x_2}$

    这样就可以求出对应的等比数列通项,再推出$a_n$的通项

    注意点

    实际上,上述三种方法都是基于待定系数的方程代还,也就是待定系数的Type 1。考场上遇到懵逼的情况,可以考虑从待定系数Type 1出发现推一下,用不了多久的

  • 相关阅读:
    How Ironic Inspector Works
    tinyipa make
    dib build ipa image Injection password
    coreos ipa image Injection of public key
    Buildroot ipa image
    diskimage-builder
    ironic baremetal node rescue/unrescue mode
    OpenStack-Ironic裸金属简介
    Python之错误与异常处理
    Python之上下文管理协议
  • 原文地址:https://www.cnblogs.com/dedicatus545/p/10876607.html
Copyright © 2020-2023  润新知