问题
计数质数
统计所有小于非负整数 n 的质数的数量。
示例:
输入: 10
输出: 4
解释: 小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7 。
第一种解法容易想到但是会 超时
class Solution {
public int countPrimes(int n) {
int counter = 0;
for (int i = 2; i < num; i++) {
if (isPrime(i)){
// 是素数 counter++
counter++;
}
}
return counter;
}
// 判断是否是素数
public boolean isPrime(int num){
for (int i=2; i<num;i++){
if(num%i==0){
return false;
}
}
return true;
}
第二种用厄拉多塞筛法
实现原理
他造了一张1到50的素数表,首先写上1到50的所有自然数,然后先划去1,把2留下,再划去其他所有2的倍数,把3留下。再划去其他所有3的倍数,把5留下。又划去其他所有5的倍数……依此类推,可以得到50以内的所有素数。这就是著名的“厄拉多塞筛法”。
public static int countPrimes(int n) {
boolean[] isPrime = new boolean[n];
// 数组中全部设置成true
Arrays.fill(isPrime, true);
for (int i = 2; i * i < n; i++) {
// 如果是素数,排除素数的倍数,因为素数的i倍就一定不是素数, i从2开始
if (isPrime[i]) {
// 让i从i平方开始,减少多余的计算,例如4x2 4x3之前都已经在2x4 3x4计算过了
for (int j = i * i; j < n; j += i) {
isPrime[j] = false;
}
}
}
int count = 0;
for (int i = 2; i < n; i++) {
//最终从2开始计算素数,如果是就++
if (isPrime[i]) {
count++;
}
}
return count;
}