• 最大最小公倍数


    算法训练 最大最小公倍数
    时间限制:1.0s 内存限制:256.0MB
    问题描述
    已知一个正整数N,问从1~N中任选出三个数,他们的最小公倍数最大可以为多少。
    输入格式
    输入一个正整数N。
    输出格式
    输出一个整数,表示你找到的最小公倍数。
    样例输入
    9
    样例输出
    504
    数据规模与约定
    1 <= N <= 106。

    import java.util.Scanner;
     
    public class Main {
     
        public void printResult(long n) {
            long result = 0;
            if(n <= 2)  //此时最多只能选择两个数,不符合题意
                return;
            if(n % 2 == 1) {
                result = n * (n - 1) * (n - 2);    
            } else {
                if(n % 3 == 0)  //说明n和n - 3有最大公约数3
                    result = (n - 1) * (n - 2) * (n - 3);
                else
                    result = n * (n - 1) * (n - 3);
            }
            System.out.println(result);
            return;
        }
        
        public static void main(String[] args) {
            Main test = new Main();
            Scanner in = new Scanner(System.in);
            long n = in.nextLong();
            test.printResult(n);
        }
    }
    

    根据数论知识:任意大于1的两个相邻的自然数都是互质的.
    我们可以知道,当n是奇数时,n 和n-2都是奇数,n-1是偶数,那么他们三个的公约数肯定不是2,而因为这三个数是连续的,所以大于2的数都不可能成为他们或其中任意两个数的公约数了.结果就是他们三个的乘积.
    而当n为偶数时,n(n-1)(n-2)肯定不行了,因为n和n-2都是偶数,那么只能将n-2改成n-3,即n(n-1)(n-3),如果这三个数两两互质那么肯定就是结果了.
    但是因为n和n-3相差3,所以当其中一个数能被3整除时,另一个肯定也可以.而当其中一个不可以时,另一个肯定也不可以.而因为n为偶数,n-3为奇数,所以2不可能成为他俩的公因子。对于大于3的数,肯定就都不可能成为这三个数或者其中任意两个数的公约数了.因此只需再对3进行判断:
    如果n能整除3,那么,n(n-1)(n-3)就肯定不行了,因为n和n-3有了公约数3,结果肯定小了,那么就只能继续判下一个即n(n-1)(n-4)而这样n-4又是偶数,不行,继续下一个n(n-1)(n-5) = n^3 -6n^2 + 5n 而如果这个可以 那个其值肯定要小于(n-1)(n-2)(n-3) = n^3 -6n^2+11n-6(对于n>1来说都成立),而(n-1)(n-2)(n-3)由上一个奇数结论可知是一个符合要求的,因此到n-5就不用判断了。直接选答案为(n-1)(n-2)(n-3);
    而n不能整除3,那么结果就是n
    (n-1)(n-3),因为n和n-3都不能整除3,此时n-1能不能整除3都无关紧要了.而对于其它数 都是不可能的.上面已证.
    简单的提炼一下,先判断n是不是奇数 ,如果是  直接输出n
    (n-1)(n-2)  否则判断n能不能被3整除,如果不能,输出n(n-1)(n-3),否则输出(n-1)(n-2)*(n-3) 
    因为连续三个数 既不能有共同的因数2 或 3 三的话 连续四个数至少两个数是3的倍数  根据3倍的周期 123 456 789 每三个数就有一个三的倍数  而2也是同样的道理 12 34 56 78 每两个就有一个二的倍数
    这道题很好 好像数据有问题一直过不了

  • 相关阅读:
    FFmpeg入门,简单播放器
    Linux系统编译Win32版本adb
    检测目标程序ELF bit是32还是64
    Swift编程资料全集
    Swift编程资料总结
    cocos2d-html5学习之三-为sprite添加触摸事件
    Cocos2d-html5学习笔记二
    cocos2d-x学习笔记一
    NSViewAnimation进行视图和窗口动画
    Cocoa中NSAnimation动画简介
  • 原文地址:https://www.cnblogs.com/cznczai/p/11150591.html
Copyright © 2020-2023  润新知