• 离散数学-二元关系、闭包的概念


    二元关系 

    设S是一个非空集合,R是关于S的元素的一个条件.假设对S中随意一个有序元素对(a,b),我们总能确定a与b是否满足条件R,就称R是S的一个关系(relation).假设a与b满足条件R,则称a与b满足条件R,则称a与b有关系R,记做aRb;否则称a与b无关系R.关系R也成为二元关系.
    定义: 
    集合 X 与集合 Y 上的二元关系是 R=(X, Y, G(R)) 其中 G(R),称为R 的图,是笛卡儿积 X × Y的子集.若 (x,y) ∈ G(R) 则称 x 是 R-关系於 y 并记作 xRy 或 R(x,y). 

    但常常地我们把关系与其图等价起来,即若 R ⊆ X × Y 则 R 是一个关系. 

    闭包

       关系的闭包运算时关系上的一元运算。它把给出的关系R扩充成一新关系R’,使R’具有一定的性质。且所进行的扩充又是最“节约”的。
    比方自反闭包。相当于把关系R对角线上的元素全改成1。其它元素不变,这样得到的R’是自反的。且是修改次数最少的。即是最“节约”的。

    一个关系R的闭包,是指加上最小数目的有序偶而形成的具有自反性,对称性或传递性的新的有序偶集,此集就是关系R的闭包。

    设R是集合A上的二元关系,R的自反(对称、传递)闭包是满足下面条件的关系R':
    (i)R'是自反的(对称的、传递的);
    (ii)R'⊇R。
    (iii)对于A上的不论什么自反(对称、传递)关系R",若R"⊇R,则有R"⊇R'。

    R的自反、对称、传递闭包分别记为r(R)、s(R) 和t(R)。
    性质1
    集合A上的二元关系R的闭包运算能够复合。比如:
    ts(R)=t(s(R))
    表示R的对称闭包的传递闭包,通常简称为R的对称传递闭包。而tsr(R)则表示R的自反对称传递闭包。

    性质2
    设R是集合A上的二元关系,则有
    (a)假设R是自反的。那么s(R)和t(R)也是自反的。
    (b)假设R是对称的。那么r(R)和t(R)也是对称的;
    (c)假设R是传递的,那么r(R)也是传递的。
    性质3
    设R是集合A上的二元关系。则有
    (a)rs(R)=sr(R);
    (b)rt(R)=tr(R);
    (c)ts(R)⊇ st(R)。

  • 相关阅读:
    这次面试就差不多了,你有什么问题需要问我呢?
    C++为啥要使用new
    C#读取“我的文档”等特殊系统路径及环境变量
    C++11 Lambda表达汇总总结
    c#计算 坐标点与坐标点之间的距离
    eclipse svn同步资源库时忽略某些不需要提交文件类型和文件夹
    通俗理解TCP/IP协议三次握手四次分手流程
    mysql 免安装版 启动服务马上关闭
    MySQL数据库安装与配置详解
    word 插入的图片被嵌套在文字底下
  • 原文地址:https://www.cnblogs.com/cynchanpin/p/6925489.html
Copyright © 2020-2023  润新知