• 拓扑排序的实现_TopoSort


    拓扑排序是求一个AOV网(顶点代表活动, 各条边表示活动之间的率先关系的有向图)中各活动的一个拓扑序列的运算, 可用于測试AOV

    网络的可行性.

    整个算法包含三步:

    1.计算每一个顶点的入度, 存入InDegree数组中.

    2.检查InDegree数组中顶点的入度, 将入度为零的顶点进栈.

    3.不断从栈中弹出入度为0的顶点并输出, 并将该顶点为尾的全部邻接点的入度减1, 若此时某个邻接点的入度为0, 便领其进栈. 反复步骤

    3, 直到栈为空时为止. 此时, 或者所有顶点都已列出, 或者因图中包括有向回路, 顶点未能所有列出.

    实现代码:

    #include "iostream"
    #include "cstdio"
    #include "cstring"
    #include "algorithm"
    #include "queue"
    #include "stack"
    #include "cmath"
    #include "utility"
    #include "map"
    #include "set"
    #include "vector"
    #include "list"
    #include "string"
    using namespace std;
    typedef long long ll;
    const int MOD = 1e9 + 7;
    const int INF = 0x3f3f3f3f;
    enum ResultCode { Underflow, Overflow, Success, Duplicate, NotPresent, Failure, HasCycle };
    template <class T>
    struct ENode
    {
    	ENode() { nxtArc = NULL; }
    	ENode(int vertex, T weight, ENode *nxt) {
    		adjVex = vertex;
    		w = weight;
    		nxtArc = nxt;
    	}
    	int adjVex;
    	T w;
    	ENode *nxtArc;
    	/* data */
    };
    template <class T>
    class Graph
    {
    public:
    	virtual ~Graph() {}
    	virtual ResultCode Insert(int u, int v, T &w) = 0;
    	virtual ResultCode Remove(int u, int v) = 0;
    	virtual bool Exist(int u, int v) const = 0;
    	/* data */
    };
    template <class T>
    class LGraph: public Graph<T>
    {
    public:
    	LGraph(int mSize);
    	~LGraph();
    	ResultCode Insert(int u, int v, T &w);
    	ResultCode Remove(int u, int v);
    	bool Exist(int u, int v) const;
    	int Vertices() const { return n; }
    	void Output();
    protected:
    	ENode<T> **a;
    	int n, e;
    	/* data */
    };
    template <class T>
    void LGraph<T>::Output()
    {
    	ENode<T> *q;
    	for(int i = 0; i < n; ++i) {
    		q = a[i];
    		while(q) {
    			cout << '(' << i << ' ' << q -> adjVex << ' ' << q -> w << ')';
    			q = q -> nxtArc;
    		}
    		cout << endl;
    	}
    	cout << endl << endl;
    }
    template <class T>
    LGraph<T>::LGraph(int mSize)
    {
    	n = mSize;
    	e = 0;
    	a = new ENode<T>*[n];
    	for(int i = 0; i < n; ++i)
    		a[i] = NULL;
    }
    template <class T>
    LGraph<T>::~LGraph()
    {
    	ENode<T> *p, *q;
    	for(int i = 0; i < n; ++i) {
    		p = a[i];
    		q = p;
    		while(p) {
    			p = p -> nxtArc;
    			delete q;
    			q = p;
    		}
    	}
    	delete []a;
    }
    template <class T>
    bool LGraph<T>::Exist(int u, int v) const
    {
    	if(u < 0 || v < 0 || u > n - 1 || v > n - 1 || u == v) return false;
    	ENode<T> *p = a[u];
    	while(p && p -> adjVex != v) p = p -> nxtArc;
    	if(!p) return false;
    	return true;
    }
    template <class T>
    ResultCode LGraph<T>::Insert(int u, int v, T &w)
    {
    	if(u < 0 || v < 0 || u > n - 1 || v > n - 1 || u == v) return Failure;
    	if(Exist(u, v)) return Duplicate;
    	ENode<T> *p = new ENode<T>(v, w, a[u]);
    	a[u] = p;
    	e++;
    	return Success;
    }
    template <class T>
    ResultCode LGraph<T>::Remove(int u, int v)
    {
    	if(u < 0 || v < 0 || u > n - 1 || v > n - 1 || u == v) return Failure;
    	ENode<T> *p = a[u], *q = NULL;
    	while(p && p -> adjVex != v) {
    		q = p;
    		p = p -> nxtArc;
    	}
    	if(!p) return NotPresent;
    	if(q) q -> nxtArc = p -> nxtArc;
    	else a[u] = p -> nxtArc;
    	delete p;
    	e--;
    	return Success;
    }
    template <class T>
    class ExtLgraph: public LGraph<T>
    {
    public:
    	ExtLgraph(int mSize): LGraph<T>(mSize) {}
    	void TopoSort(int *order);
    private:
    	void CallInDegree(int *InDegree);
    	/* data */
    };
    template <class T>
    void ExtLgraph<T>::TopoSort(int *order)
    {
    	int *InDegree = new int[LGraph<T>::n];
    	int top = -1; // 置栈顶指针为-1, 代表空栈
    	ENode<T> *p;
    	CallInDegree(InDegree); // 计算每一个顶点的入度
    	for(int i = 0; i < LGraph<T>::n; ++i)
    		if(!InDegree[i]) { // 图中入度为零的顶点进栈
    			InDegree[i] = top;
    			top = i;
    		}
    	for(int i = 0; i < LGraph<T>::n; ++i) { // 生成拓扑排序
    		if(top == -1) throw HasCycle; // 若堆栈为空, 说明图中存在有向环
    		else {
    			int j = top;
    			top = InDegree[top]; // 入度为0的顶点出栈
    			order[i] = j;
    			cout << j << ' ';
    			for(p = LGraph<T>::a[j]; p; p = p -> nxtArc) { // 检查以顶点j为尾的全部邻接点
    				int k = p -> adjVex; // 将j的出邻接点入度减1
    				InDegree[k]--;
    				if(!InDegree[k]) { // 顶点k入度为0时进栈
    					InDegree[k] = top;
    					top = k;
    				}
    			}
    		}
    	}
    }
    template <class T>
    void ExtLgraph<T>::CallInDegree(int *InDegree)
    {
    	for(int i = 0; i < LGraph<T>::n; ++i)
    		InDegree[i] = 0; // 初始化InDegree数组
    	for(int i = 0; i < LGraph<T>::n; ++i)
    		for(ENode<T> *p = LGraph<T>::a[i]; p; p = p -> nxtArc) // 检查以顶点i为尾的全部邻接点
    			InDegree[p -> adjVex]++; // 将顶点i的邻接点p -> adjVex的入度加1
    }
    int main(int argc, char const *argv[])
    {
    	ExtLgraph<int> lg(9);
    	int w = 10; lg.Insert(0, 2, w); lg.Insert(0, 7, w);
    	lg.Insert(2, 3, w); lg.Insert(3, 5, w);
    	lg.Insert(3, 6, w); lg.Insert(4, 5, w);
    	lg.Insert(7, 8, w); lg.Insert(8, 6, w);
    	int *order = new int[9];
    	lg.TopoSort(order);
    	cout << endl;
    	delete []order;
    	return 0;
    }


  • 相关阅读:
    【译】使用自定义ViewHelper来简化Asp.net MVC view的开发part5(完)
    【译】使用自定义ViewHelper来简化Asp.net MVC view的开发part1
    【译】使用自定义ViewHelper来简化Asp.net MVC view的开发part3
    开发者分享在PC上制作iOS游戏的经验(上)
    dpi和ppi是什么意思
    Go语言
    逆向思维魔兽世界封包分析(2)
    关于手机游戏的部分情况调查
    《Android Dev Guide》系列教程1:什么是Android?
    拼包函数及网络封包的异常处理(含代码)
  • 原文地址:https://www.cnblogs.com/cxchanpin/p/7294469.html
Copyright © 2020-2023  润新知