连接的管道
老 Jack 有一片农田,以往几年都是靠天吃饭的。但是今年老天格外的不开眼,大旱。所以老 Jack 决定用管道将他的所有相邻的农田全部都串联起来,这样他就可以从远处引水过来进行灌溉了。当老 Jack 买完所有铺设在每块农田内部的管道的时候,老 Jack 遇到了新的难题,因为每一块农田的地势高度都不同,所以要想将两块农田的管道链接,老 Jack 就需要额外再购进跟这两块农田高度差相等长度的管道。
现在给出老 Jack农田的数据,你需要告诉老 Jack 在保证所有农田全部可连通灌溉的情况下,最少还需要再购进多长的管道。另外,每块农田都是方形等大的,一块农田只能跟它上下左右四块相邻的农田相连通。
Input
第一行输入一个数字T(T≤10),代表输入的样例组数
输入包含若干组测试数据,处理到文件结束。每组测试数据占若干行,第一行两个正整数 N,M(1≤N,M≤1000),代表老 Jack 有N行*M列个农田。接下来 N 行,每行 M 个数字,代表每块农田的高度,农田的高度不会超过100。数字之间用空格分隔。
Output
对于每组测试数据输出两行:
第一行输出:"Case #i:"。i代表第i组测试数据。
第二行输出 1 个正整数,代表老 Jack 额外最少购进管道的长度。
Sample Input
2
4 3
9 12 4
7 8 56
32 32 43
21 12 12
2 3
34 56 56
12 23 4
Sample Output
Case #1:
82
Case #2:
74
思路:
把所有点连接在一起的最下费用,直接最小生成树就行了,一共是1000*1000*2条边,时间复杂度没啥问题,其实总感觉这个题目有点别扭,就是水流的方向问题,感觉是最小树形图,哎!想多了。
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define N_node 1000*1000+10
#define N_edge 1000 * 1000 * 2 + 10
using namespace std;
typedef struct
{
int a ,b ,c;
}EDGE;
EDGE E[N_edge];
int map[1005][1005];
bool camp(EDGE a ,EDGE b)
{
return a.c < b.c;
}
int mer[N_node];
int finds(int x)
{
return x == mer[x] ? x : mer[x] = finds(mer[x]);
}
int abss(int x)
{
return x > 0 ? x : -x;
}
int main ()
{
int t ,n ,m ,i ,j ,cas = 1;
scanf("%d" ,&t);
while(t--)
{
scanf("%d %d" ,&n ,&m);
for(i = 1 ;i <= n ;i ++)
for(j = 1 ;j <= m ;j ++)
scanf("%d" ,&map[i][j]);
int nowid = 0;
for(i = 1 ;i <= n ;i ++)
for(j = 1 ;j <= m ;j ++)
{
int now = (i - 1) * m + j;
mer[now] = now;
if(j < m)
{
nowid ++;
E[nowid].a = now;
E[nowid].b = (i - 1) * m + j + 1;
E[nowid].c = abss(map[i][j] - map[i][j+1]);
}
if(i < n)
{
nowid ++;
E[nowid].a = now;
E[nowid].b = (i - 1 + 1) * m + j;
E[nowid].c = abss(map[i][j] - map[i+1][j]);
}
}
sort(E + 1 ,E + nowid + 1 ,camp);
int sum = 0;
for(i = 1 ;i <= nowid ;i ++)
{
int a = finds(E[i].a);
int b = finds(E[i].b);
if(a != b)
{
mer[a] = b;
sum += E[i].c;
}
}
printf("Case #%d:
" ,cas ++);
printf("%d
" ,sum);
}
return 0;
}