4. Median of Two Sorted Arrays
Problem's Link
----------------------------------------------------------------------------
Mean:
给定两个数组,求这两个数组的中位数.(要求时间复杂度为O(log(n+m))
analyse:
一开始用归并为一个数组的方法做了一下也AC了,看来lc的时间还是给的很宽的.
将本题转化为求第k大数就简单多了,其中求第k大数使用类似二分的方法来实现,从而将时间复杂度降到O(log(n+m)).
Time complexity: O(log(n+m)
view code
/**
* -----------------------------------------------------------------
* Copyright (c) 2016 crazyacking.All rights reserved.
* -----------------------------------------------------------------
* Author: crazyacking
* Date : 2016-02-03-12.07
*/
#include <queue>
#include <cstdio>
#include <set>
#include <string>
#include <stack>
#include <cmath>
#include <climits>
#include <map>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long(LL);
typedef unsigned long long(ULL);
const double eps(1e-8);
/*Solution 1*/
class Solution
{
//求A和B数组的第k大数
int getMedian(int A[], int m, int B[], int n,int k)
{
if(m>n)
return getMedian(B,n,A,m,k); //默认A为短数组
if(m==0)
return B[k-1];
if(k==1)
return min(A[0], B[0]);
int pa = min(k/2, m);
int pb = k - pa;
if(A[pa-1] < B[pb-1])
{
return getMedian(A+pa, m-pa, B, n, k-pa);
}
else if(A[pa-1] > B[pb-1])
{
return getMedian(A, m, B+pb, n-pb, k-pb);
}
else
{
return A[pa-1];
}
return 0;
}
public:
double work(int A[], int m, int B[], int n)
{
if((m+n)%2 == 0)
{
return (getMedian(A, m,B, n, (m+n)/2) + getMedian(A, m,B, n, (m+n)/2+1)) /2.;
}
else
{
return getMedian(A, m,B, n, (m+n)/2+1);
}
}
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2)
{
int A[10000],B[10000];
int idx=0;
for(auto p:nums1)
{
A[idx++]=p;
}
idx=0;
for(auto p:nums2)
{
B[idx++]=p;
}
int m=nums1.size();
int n=nums2.size();
double ret=work(A,m,B,n);
return ret;
}
};
/*Solution 2*/
/*
class Solution
{
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2)
{
auto it1=nums1.begin();
auto it2=nums2.begin();
vector<int> a;
while(it1!=nums1.end() || it2!=nums2.end())
{
if(it1==nums1.end() && it2!=nums2.end())
{
a.push_back((*it2));
it2++;
}
else if(it1!=nums1.end() && it2==nums2.end())
{
a.push_back(*it1);
it1++;
}
else if(it1!=nums1.end() && it2!=nums2.end())
{
if((*it1)<(*it2))
{
a.push_back(*it1);
it1++;
}
else
{
a.push_back(*it2);
it2++;
}
}
}
int len=a.size();
double ans=(len%2)?(double)a[len/2]:(double)(a[len/2-1]+a[len/2])/2.;
return ans;
}
};
*/
int main()
{
int n,m,temp;
while(cin>>n>>m)
{
vector<int> a,b;
for(int i=0;i<n;++i)
{
cin>>temp;
a.push_back(temp);
}
for(int i=0;i<m;++i)
{
cin>>temp;
b.push_back(temp);
}
Solution solution;
double ans=solution.findMedianSortedArrays(a,b);
cout<<"===========ans==========="<<endl;
cout<<ans<<endl;
}
return 0;
}
* -----------------------------------------------------------------
* Copyright (c) 2016 crazyacking.All rights reserved.
* -----------------------------------------------------------------
* Author: crazyacking
* Date : 2016-02-03-12.07
*/
#include <queue>
#include <cstdio>
#include <set>
#include <string>
#include <stack>
#include <cmath>
#include <climits>
#include <map>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long(LL);
typedef unsigned long long(ULL);
const double eps(1e-8);
/*Solution 1*/
class Solution
{
//求A和B数组的第k大数
int getMedian(int A[], int m, int B[], int n,int k)
{
if(m>n)
return getMedian(B,n,A,m,k); //默认A为短数组
if(m==0)
return B[k-1];
if(k==1)
return min(A[0], B[0]);
int pa = min(k/2, m);
int pb = k - pa;
if(A[pa-1] < B[pb-1])
{
return getMedian(A+pa, m-pa, B, n, k-pa);
}
else if(A[pa-1] > B[pb-1])
{
return getMedian(A, m, B+pb, n-pb, k-pb);
}
else
{
return A[pa-1];
}
return 0;
}
public:
double work(int A[], int m, int B[], int n)
{
if((m+n)%2 == 0)
{
return (getMedian(A, m,B, n, (m+n)/2) + getMedian(A, m,B, n, (m+n)/2+1)) /2.;
}
else
{
return getMedian(A, m,B, n, (m+n)/2+1);
}
}
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2)
{
int A[10000],B[10000];
int idx=0;
for(auto p:nums1)
{
A[idx++]=p;
}
idx=0;
for(auto p:nums2)
{
B[idx++]=p;
}
int m=nums1.size();
int n=nums2.size();
double ret=work(A,m,B,n);
return ret;
}
};
/*Solution 2*/
/*
class Solution
{
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2)
{
auto it1=nums1.begin();
auto it2=nums2.begin();
vector<int> a;
while(it1!=nums1.end() || it2!=nums2.end())
{
if(it1==nums1.end() && it2!=nums2.end())
{
a.push_back((*it2));
it2++;
}
else if(it1!=nums1.end() && it2==nums2.end())
{
a.push_back(*it1);
it1++;
}
else if(it1!=nums1.end() && it2!=nums2.end())
{
if((*it1)<(*it2))
{
a.push_back(*it1);
it1++;
}
else
{
a.push_back(*it2);
it2++;
}
}
}
int len=a.size();
double ans=(len%2)?(double)a[len/2]:(double)(a[len/2-1]+a[len/2])/2.;
return ans;
}
};
*/
int main()
{
int n,m,temp;
while(cin>>n>>m)
{
vector<int> a,b;
for(int i=0;i<n;++i)
{
cin>>temp;
a.push_back(temp);
}
for(int i=0;i<m;++i)
{
cin>>temp;
b.push_back(temp);
}
Solution solution;
double ans=solution.findMedianSortedArrays(a,b);
cout<<"===========ans==========="<<endl;
cout<<ans<<endl;
}
return 0;
}