• XTUOJ 1238 Segment Tree


    Segment Tree

    Accepted : 3 Submit : 21
    Time Limit : 9000 MS Memory Limit : 65536 KB

    Problem Description:

    A contest is not integrity without problems about data structure.

    There is an array a[1],a[2],…,a[n]. And q questions of the following 4 types:
    1 l r c - Update a[k] with a[k]+c for all l≤k≤r
    2 l r c - Update a[k] with min{a[k],c} for all l≤k≤r;
    3 l r c - Update a[k] with max{a[k],c} for all l≤k≤r;
    4 l r - Ask for min{a[k]:l≤k≤r} and max{a[k]:l≤k≤r}.


    Input

    The first line contains a integer T(no more than 5) which represents the number of test cases.

    For each test case, the first line contains 2 integers n,q (1≤n,q≤200000).

    The second line contains n integers a1,a2,…,an which indicates the initial values of the array (|ai|≤).

    Each of the following q lines contains an integer t which denotes the type of i-th question. If t=1,2,3, 3 integers l,r,c follows. If t=4, 2 integers l,r follows. (1≤ti≤4,1≤li≤ri≤n)

    If t=1, |ci|≤2000;

    If t=2,3, |ci|≤10^9.

    Output

    For each question of type 4, output two integers denote the minimum and the maximum.

    Sample Input

    1
    1 1
    1
    4 1 1

    Sample Output

    1 1

    解题:如其名,线段树!关键在于如何解决矛盾,既要相加,又要进行区间重置?那么这样搞,如何进行lazy呢?只要设置一个重置标志就好了。

    BB is cheap!

      1 #include <bits/stdc++.h>
      2 using namespace std;
      3 const int maxn = 200010;
      4 struct node {
      5     int lt,rt,theMin,theMax,add,lazy;
      6     bool reset;
      7 } tree[maxn<<2];
      8 void pushup(int v) {
      9     tree[v].theMax = max(tree[v<<1].theMax,tree[v<<1|1].theMax);
     10     tree[v].theMin = min(tree[v<<1].theMin,tree[v<<1|1].theMin);
     11 }
     12 void pushdown(int v) {
     13     if(tree[v].reset){
     14         tree[v].reset = false;
     15         tree[v<<1].reset = tree[v<<1|1].reset = true;
     16         tree[v<<1].lazy = tree[v<<1|1].lazy = tree[v].lazy;
     17         tree[v<<1].theMin = tree[v<<1].theMax = tree[v].lazy;
     18         tree[v<<1|1].theMin = tree[v<<1|1].theMax = tree[v].lazy;
     19         tree[v<<1].add = tree[v<<1|1].add = 0;
     20         //cout<<tree[v].lt<<" "<<tree[v].rt<<" "<<tree[v].lazy<<" nmb"<<endl;
     21     }
     22     if(tree[v].add){
     23         tree[v<<1].add += tree[v].add;
     24         tree[v<<1|1].add += tree[v].add;
     25         tree[v<<1].theMax += tree[v].add;
     26         tree[v<<1].theMin += tree[v].add;
     27         tree[v<<1|1].theMax += tree[v].add;
     28         tree[v<<1|1].theMin += tree[v].add;
     29         tree[v].add = 0;
     30     }
     31 }
     32 void build(int lt,int rt,int v) {
     33     tree[v].lt = lt;
     34     tree[v].rt = rt;
     35     tree[v].reset = false;
     36     tree[v].add = 0;
     37     if(lt == rt) {
     38         scanf("%d",&tree[v].theMin);
     39         tree[v].theMax = tree[v].theMin;
     40         return;
     41     }
     42     int mid = (lt + rt)>>1;
     43     build(lt,mid,v<<1);
     44     build(mid+1,rt,v<<1|1);
     45     pushup(v);
     46 }
     47 int queryMax(int lt,int rt,int v) {
     48     if(lt <= tree[v].lt && rt >= tree[v].rt) return tree[v].theMax;
     49     pushdown(v);
     50     int theMax = INT_MIN;
     51     if(lt <= tree[v<<1].rt) theMax = max(theMax,queryMax(lt,rt,v<<1));
     52     if(rt >= tree[v<<1|1].lt) theMax = max(theMax,queryMax(lt,rt,v<<1|1));
     53     pushup(v);
     54     return theMax;
     55 }
     56 int queryMin(int lt,int rt,int v) {
     57     if(lt <= tree[v].lt && rt >= tree[v].rt) return tree[v].theMin;
     58     pushdown(v);
     59     int theMin = INT_MAX;
     60     if(lt <= tree[v<<1].rt) theMin = min(theMin,queryMin(lt,rt,v<<1));
     61     if(rt >= tree[v<<1|1].lt) theMin = min(theMin,queryMin(lt,rt,v<<1|1));
     62     pushup(v);
     63     return theMin;
     64 }
     65 void add(int lt,int rt,int val,int v) {
     66     if(lt <= tree[v].lt && rt >= tree[v].rt) {
     67         tree[v].add += val;
     68         tree[v].theMax += val;
     69         tree[v].theMin += val;
     70         return;
     71     }
     72     pushdown(v);
     73     if(lt <= tree[v<<1].rt) add(lt,rt,val,v<<1);
     74     if(rt >= tree[v<<1|1].lt) add(lt,rt,val,v<<1|1);
     75     pushup(v);
     76 }
     77 void updateMax(int lt,int rt,int val,int v) {
     78     if(lt <= tree[v].lt && rt >= tree[v].rt && tree[v].theMax <= val) {
     79         tree[v].reset = true;
     80         tree[v].theMax = tree[v].theMin = val;
     81         tree[v].lazy = val;
     82         tree[v].add = 0;
     83         return;
     84     }else if(lt <= tree[v].lt && rt >= tree[v].rt && val <= tree[v].theMin) return;
     85     pushdown(v);
     86     if(lt <= tree[v<<1].rt) updateMax(lt,rt,val,v<<1);
     87     if(rt >= tree[v<<1|1].lt) updateMax(lt,rt,val,v<<1|1);
     88     pushup(v);
     89 }
     90 void updateMin(int lt,int rt,int val,int v) {
     91     if(lt <= tree[v].lt && rt >= tree[v].rt && tree[v].theMin >= val){
     92         tree[v].add = 0;
     93         tree[v].reset = true;
     94         tree[v].theMax = tree[v].theMin = val;
     95         tree[v].lazy = val;
     96         return;
     97     }else if(lt <= tree[v].lt && rt >= tree[v].rt  && tree[v].theMax <= val) return;
     98     pushdown(v);
     99     if(lt <= tree[v<<1].rt) updateMin(lt,rt,val,v<<1);
    100     if(rt >= tree[v<<1|1].lt) updateMin(lt,rt,val,v<<1|1);
    101     pushup(v);
    102 }
    103 int main() {
    104     int n,q,op,x,y,c,T;
    105     scanf("%d",&T);
    106     while(T--){
    107         scanf("%d %d",&n,&q);
    108         build(1,n,1);
    109         while(q--){
    110             scanf("%d%d%d",&op,&x,&y);
    111             switch(op){
    112                 case 1:scanf("%d",&c);add(x,y,c,1);break;
    113                 case 2:scanf("%d",&c);updateMin(x,y,c,1);break;
    114                 case 3:scanf("%d",&c);updateMax(x,y,c,1);break;
    115                 case 4:printf("%d %d
    ",queryMin(x,y,1),queryMax(x,y,1));break;
    116                 default:;
    117             }
    118         }
    119     }
    120     return 0;
    121 }
    View Code
  • 相关阅读:
    毕设进度28
    任务27
    任务26
    任务25
    任务24
    第二次冲刺
    课堂作业-搜狗输入法
    课堂作业-寻找水王
    博客花园典型用户和场景
    第十天
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/4574960.html
Copyright © 2020-2023  润新知