火柴排队
内存限制:128 MiB
时间限制:1000 ms
题目描述
涵涵有两盒火柴,每盒装有n 根火柴,每根火柴都有一个高度。 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相同, 两列火柴之间的距离定义为: 其中 ai 表示第一列火柴中第 i 个火柴的高度,bi 表示第二列火柴中第 i 个火柴的高度。每列火柴中相邻两根火柴的位置都可以交换,请你通过交换使得两列火柴之间的距离最小。
请问得到这个最小的距离,最少需要交换多少次?如果这个数字太大,请输出这个最小交换次数对 99,999,997 取模的结果。
输入格式
共三行,第一行包含一个整数 n,表示每盒中火柴的数目。
第二行有 n 个整数,每两个整数之间用一个空格隔开,表示第一列火柴的高度。
第三行有 n 个整数,每两个整数之间用一个空格隔开,表示第二列火柴的高度。
输出格式
输出共一行,包含一个整数,表示最少交换次数对 99,999,997 取模的结果。
样例
样例1输入
4
2 3 1 4
3 2 1 4
样例1输出
1
样例2输入
4
1 3 4 2
1 7 2 4
样例2输出
2
数据范围与提示
输入输出样例说明1:
最小距离是 0,最少需要交换 1 次,比如:交换第 1 列的前 2 根火柴或者交换第 2 列的前 2 根火柴。
输入输出样例说明2:
最小距离是 10,最少需要交换 2 次,比如:交换第 1 列的中间 2 根火柴的位置,再交换第 2 列中后 2 根火柴的位置。
数据范围:对于 10%的数据, 1 ≤ n ≤ 10;对于 30%的数据,1 ≤ n ≤ 100;对于 60%的数据,1 ≤ n ≤ 1,000;对于 100%的数据,1 ≤ n ≤ 100,000,0 ≤火柴高度≤ maxlongint
分析
感谢C202207LYX提出问题,现将证明给出。
这是一道比较有意思的题目。
如果要使最小,那么的值就因该为最小,为了保证所有的总值最小,就需要让序列中的第个数对应序列的第个数。
可以得出一个结论就是同序和≥乱序和≥逆序和
证明:
设有序数列k1kn,p1pn,取k1<k2、p1<p2 因此容易得到:k1p1+k2p2>k1p2+k2p1; 将上述不等式变形一下: k2p2-k2p1>k1p2-k1p1 即k2(p2-p1)>k1(p2-p1) ∵k2>k1,p2>p1 ∴k2(p2-p1)>k1(p2-p1) 证毕; 推广2中的结论到1中,乱序就是不断将顺序交换打乱的过程,最终结果符合2的结论,因此 顺序之乘>=乱序之乘,证毕
同序操作
首先定义一个结构体:
struct node {
LL val, num;
};
这里引入一个思想——离散化。
通过数据范围,可以得知:1 ≤ n ≤ 100,000,&& 0 ≤火柴高度≤ maxlongint,也就是说,火柴的高度分布比较稀疏,并且如果排序,那么 会直接溢出。、
此时接需要离散化
离散化
定义:离散化,把无限空间中有限的个体映射到有限的空间中去,离散化是在不改变数据相对大小的条件下,对数据进行相应的缩小。例如:
原数据:;处理后:
原数据:
处理后:
此时可以通过中的实现对数据离散化的操作。
警示:简单的离散化不能去重
但在此题中必然会有相同的元素出现因为是毒瘤数据
所以可以通过先保存下标,再根据的大小。
给出参考代码:
bool cmp(node x, node y) {
if(x.val == y.val)
return x.num < y.num;
return x.val < y.val;
}
for(LL i = 1;i <= n; i++) {
scanf("%lld", &a[i].val);
a[i].num = i;
}
for(LL i = 1;i <= n; i++) {
scanf("%lld", &b[i].val);
b[i].num = i;
}
sort(a + 1, a + 1 + n, cmp);
sort(b + 1, b + 1 + n, cmp);
然后经行同序排列。
假设我们离散化之后得到了这样两个序列:
我们以为关键字对排序,令,在和中构造一种映射关系。
若序列与序列相等,那么此时应该等于的,也就是。
那么也就是说如果我们想让序列与序列相等,那么我们需要让升序排列。
问题就变为,将原本乱的序列升序排列的最少交换次数。
我们会得到:,x序列就是这样的:。哪里是“乱”的,就调整哪里。和是“乱”的,调整这两处即可。也就是说,要维护这个例子中的这两个序列的“距离”最小值,我们最少只需要调整2次即可。在这里就是一组逆序对。有几个逆序对,就要调整几次。
那么这题可以最终得到一个结论:在序列中逆序对的个数就是本题的答案。
逆序对
求逆序对一共有三种方法:
- 1.暴力枚举
只能得到80pts。
for (int i = 1; i <= n; i++)
for (int j = i; j <= n; j++)
if (x[i] > x[j]) {
ans++;
ans %= MOD;
}
- 2.归并排序
void merge(LL L, LL R, LL Mid){
LL i = L;LL j = Mid + 1;LL k = L;
while(i <= Mid && j <= R){
if(x[i] <= x[j])t[k ++] = x[i ++];
else{
ans += Mid - i + 1;
ans %= MOD;
t[k ++] = x[j ++];
}
}
while(i <= Mid)t[k ++] = x[i ++];
while(j <= R)t[k ++] = x[j ++];
for(i = L; i <= R; i ++)x[i] = t[i];
}
void mergesort(LL L, LL R){
if(L < R){
LL Mid = (L + R) / 2;
mergesort(L, Mid),mergesort(Mid + 1, R);
merge(L, R, Mid);
}
}
- 3.树状数组
我太菜了。。。还没学会。。。
参考代码
#include <cstdio>
#include <iostream>
#include <algorithm>
#define LL long long
using namespace std;
const int MAXN = 100005;
const int MOD = 99999997;
struct node {
LL val, num;
};
LL n, ans, x[MAXN], t[MAXN];
node a[MAXN], b[MAXN];
bool cmp(node x, node y) {
if(x.val == y.val)
return x.num < y.num;
return x.val < y.val;
}
void merge(LL L, LL R, LL Mid){
LL i = L;LL j = Mid + 1;LL k = L;
while(i <= Mid && j <= R){
if(x[i] <= x[j])t[k ++] = x[i ++];
else{
ans += Mid - i + 1;
ans %= MOD;
t[k ++] = x[j ++];
}
}
while(i <= Mid)t[k ++] = x[i ++];
while(j <= R)t[k ++] = x[j ++];
for(i = L; i <= R; i ++)x[i] = t[i];
}
void mergesort(LL L, LL R){
if(L < R){
LL Mid = (L + R) / 2;
mergesort(L, Mid),mergesort(Mid + 1, R);
merge(L, R, Mid);
}
}
int main() {
scanf("%lld", &n);
for(LL i = 1;i <= n; i++) {
scanf("%lld", &a[i].val);
a[i].num = i;
}
for(LL i = 1;i <= n; i++) {
scanf("%lld", &b[i].val);
b[i].num = i;
}
sort(a + 1, a + 1 + n, cmp);
sort(b + 1, b + 1 + n, cmp);
for(LL i = 1;i <= n; i++) {
x[a[i].num] = b[i].num;
}
mergesort(1, n);
printf("%lld
", ans % MOD);
return 0;
}