题意
题解
之前一直以为prim堆优化之后复杂度是O(nlogn)...YY了一发之后不出所料的60pts TLE了qwq(实际上是O(n+m)logn)
算法复杂度高的原因建了很多不必要的边
对于每一维空间,只有相邻的两个点才会建边,所以总边数=n*3
再跑kruskal或者prim都可以了
关键:把状态拆分,分层讨论
代码
最小距离和【60pts】
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define mp make_pair
#define pr pair<ll,int>
priority_queue<pr,vector<pr>,greater<pr> >q;
const int INF = 0x3f3f3f3f,N = 1e5+10;
int n,ecnt=-1,vis[N],fa[N];
ll dis[N],ans;
struct point
{
int x,y,z;
}a[N];
inline ll Min(int i,int j)
{
return min(min(abs(a[i].x-a[j].x),abs(a[i].y-a[j].y)),abs(a[i].z-a[j].z));
}
void prim()
{
for(int i=1;i<=n;i++) dis[i]=1e18;
dis[1]=0;
q.push(mp(0,1));
while(!q.empty())
{
int u=q.top().second;q.pop();
if(vis[u]) continue;
vis[u]=1,ans+=dis[u];
for(int i=1;i<=n;i++)
{
int v=i;
if(vis[v]||v==u) continue;
if(dis[v]>Min(u,v))
{
//printf("(u,v):%d %d
",u,v);
dis[v]=Min(u,v);
q.push(mp(dis[v],v));
}
}
}
}
int main()
{
//memset(head,-1,sizeof(head));
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].z);
prim();
printf("%lld",ans);
return 0;
}
最小距离和【AC】
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int INF = 0x3f3f3f3f,N = 1e5+10;
int n,m,f[N],cnt;
ll ans;
struct edge
{
int x,y;
ll w;
inline bool operator < (const edge oth) const
{
return w<oth.w;
}
}dis[N<<2];
struct point
{
int x,y,z,id;
}a[N];
bool cmp1(point a,point b) {return a.x<b.x;}
bool cmp2(point a,point b) {return a.y<b.y;}
bool cmp3(point a,point b) {return a.z<b.z;}
void init(){for(int i=1;i<=n;i++) f[i]=i;}
int find(int x)
{
if(f[x]==x) return x;
return f[x]=find(f[x]);
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].z);
a[i].id=i;
}
init();
sort(a+1,a+n+1,cmp1);
for(int i=1;i<n;i++)
dis[++cnt]=(edge){a[i].id,a[i+1].id,(ll)abs(a[i].x-a[i+1].x)};
sort(a+1,a+n+1,cmp2);
for(int i=1;i<n;i++)
dis[++cnt]=(edge){a[i].id,a[i+1].id,(ll)abs(a[i].y-a[i+1].y)};
sort(a+1,a+n+1,cmp3);
for(int i=1;i<n;i++)
dis[++cnt]=(edge){a[i].id,a[i+1].id,(ll)abs(a[i].z-a[i+1].z)};
sort(dis+1,dis+cnt+1);
int ecnt=0;
for(int i=1;i<=cnt;i++)
{
int x=dis[i].x,y=dis[i].y;
if(find(x)!=find(y))
{
f[f[x]]=f[y];
ans+=dis[i].w;
ecnt++;
}
if(ecnt==n-1) break;
}
printf("%lld",ans);
return 0;
}