• (K8s学习笔记八)Pod的扩缩容


    1.手动扩容机制

     示例:对busybox-deployment手动扩缩容

    apiVersion:apps/v1 
    kind: Deployment
    metadata:
      name: busybox-deployment
    spec:
      replicas: 3
      template:
        metadata:
          labels:
            app: busybox
        spec:
          containers:
          - name: busybox
            image: busybox:latest
    # 此Pod已运行副本数量3个,使用kubectl scale命令扩容至5个
    kubectl scale deploy busybox-deployment --replicas 5
    注:如将replicas值设置小于当前副本数则系统会杀掉一些运行中的Pod已实现缩容

    2.自动扩容机制(HPA)

    Horizontal Pod Autoscaler(HPA)的控制器,用于实现基于CPU使用率进行自动Pod扩容的功能,HPA控制器基于Master的kube-controllere-manager服务启动参数--horizontal-pod-autoscaler-sync-period定义的探测周期(默认值为15s),周期性监测目标Pod的资源性能指标,并与HPA资源对象中的扩容条件进行对比,在满足条件时对Pod副本数量进行调整。

    使用HPA功能需要在controller-manager启动文件中加入的参数:

    • --horizontal-pod-autoscaler-tolerance=0.1,设置扩缩容忍度,默认值0.1(10%),表示基于算法得到的结果在0.9-1.1(-10%-10%),控制器都不会进行扩缩容
    • --horizontal-pod-autoscaler-initial-readiness-delay=30s,设置首次探测Pod是否Ready的延时时间,默认值30min
    • --horizontal-pod-autoscaler-cpuinitialization-period=10s,设置首次采集Pod的CPU使用率的延迟时间
    • --horizontal-pod-autoscaler-downscale-stabilization=1m0s,这个配置可让系统更平滑的进行缩容操作,默认值5min

    使用HorizontalPodAutoscaler配置自定义扩缩容的规则:

    apiVersion: autoscaling/v2beta2
    kind: HorizontalPodAutoscaler
    metadata:
      name: nginx
    spec:
      scaleTargetRef:              # 定义目标对象,可以是deploy/RC/RS
        apiVersion: apps/v1
        kind: Deployment
        name: nginx
      minReplicas: 1               # pod副本数量的最下值
      maxReplicas: 10              # pod副本数量的最大值
      metrics:                     # 目标指标值,系统在指标数据达到目标值时出发扩缩容操作
      - type: Resource             # 定义目标值
        resources:                 
          name: cpu
          target:
            type: Utilization
            averageUtilization: 50

    注:目标值类型可包括三项

    • Resource:基于资源的指标,可设置CPU和内存,对于CPU使用率可在target参数中设置averageUtilization定义目标平均CPU使用率;对于内存使用率可在target参数中设置AverageValue定义目标平均内存使用率
    • Pods:基于pod的指标,系统对全部Pod副本的指标进行计算平均值,数据来源于Pod对象本身,其target类型只能使用AverageValue
    • Object:基于某种资源对象(如Ingress)的指标或应用系统的任意自定义指标,数据来源于其它资源对象或任意自定义指标,其target类型可以使用Value和AverageValue(根据Pod副本数计算平均值)进行设置

     示例一:

    apiVersion: autoscaling/v2beta2
    kind: HorizontalPodAutoscaler
    metadata:
      name: nginx
    spec:
      scaleTargetRef:
        apiVersion: apps/v1
        kind: Deployment
        name: nginx
      minReplicas: 1
      maxReplicas: 10
      metrics:
      - type: Object
        object:
          metrics:
            name: requests-per-second         # 指标名称
          describedObject:            
            apiVersion: extensions/v1beta1
            kind: Ingress                     # 来源于ingress main-route
            name: main-route
          target:
            type: Value
            value: 2k                         # 目标值为2000,即在ingress的每秒请求数达到2000时触发扩缩容操作

    示例二:

    apiVersion: autoscaling/v2beta2
    kind: HorizontalPodAutoscaler
    metadata:
      name: nginx
    spec:
      scaleTargetRef:
        apiVersion: apps/v1
        kind: Deployment
        name: nginx
      minReplicas: 1
      maxReplicas: 10
      metrics:
      - type: Object
        object:
          metrics:
            name: 'http_requests'         # 指标名称
            selector: 'verb=GET'          # 资源对象具有的标签
          target:
            type: AverageValue
            averageValue: 500             # 平均值到500触发扩缩容操作

    示例三:系统针对每种类型的指标都计算Pod副本的目标数量,以最大值为准进行扩缩容操作

    apiVersion: autoscaling/v2beta2
    kind: HorizontalPodAutoscaler
    metadata:
      name: nginx
    spec:
      scaleTargetRef:
        apiVersion: apps/v1
        kind: Deployment
        name: nginx
      minReplicas: 1
      maxReplicas: 10
      metrics:
      - type: Resource
        resources:
          name: cpu
        targetAverageUtilization: 50
      - type: Pods
        pods:
          metrics:
            name: packets-per-second
          targetAverageUtilization: 1k
      - type: Object
        object:
          metrics:
            name: requests-per-second
          describedObject:
            apiVersion: extensions/v1beta1
            kind: Ingress
            name: main-route
          target:
            kind: Value
            value: 1k

    示例四:使用外部服务的性能指标对自己部署的K8s中的服务进行HPA

    .......
    metrics:
    - type: External
      external:
        metrics:
          name: queue-message-ready
          selector: 'queue=worker_tasks'
        targetAverageUtilization: 30

    基于外部服务的性能指标实现HPA需要预先部署自定义Metries Server,目前可以基于Prometheus、MS Azure、Datadog Cluster和Google Stackdriver等系统的Adapter实现

     使用外部性能指标,在K8s master的API Server启动Aggregation层,需要在apierver启动文件中加入的参数:

    • --requestheader-client-ca-file,指定客户端的CA证书
    • --requestheader-allowed-names,允许访问的客户端common name列表,将其设置为空置时,表示任意客户端都可以访问
    • --requestheader-extra-headers-prefix=X-Remote-Extra,请求头中需要检查的前缀名
    • --requestheader-group-headers=X-Remote-Group,请求头中需要检查的组名
    • --requestheader-username-headers=X-Remote-User,请求头中需要检查的用户名
    • --proxy-client-cert-file,在请求期间验证Aggregator的客户端CA证书
    • --proxy-client-key-file,在请求期间验证Aggreagator的客户端私钥

     使用外部性能指标,在K8s master的API Server启动Aggregation层,需要在controller-manager启动文件中加入的参数:

    --horizontal-pod-autoscaler-sync-period=10s,HPA控制器同步Pod副本数量的时间间隔,默认值15s

    示例五、使用Prometheus作为外部性能指标收集器

    # 部署Prometheus Operator
    apiVersion: apps/v1 
    kind: Deployment
    metadata:
      labels:
        k8s-app: prometheus-operator
      name: prometheus-operator
    spec:
      replicas: 1
      selector:
        matchLabels:
          k8s-app: prometheus-operator
      template:
        metadata:
          labels:
            k8s-app: prometheus-operator
        spec:
          containers:
          - image: quay.io/coreos/prometheus-operator:v0.40.0
            imagePullPolicy: IfNotPresent
            name: prometheus-operator
            ports:
            - containerPort: 8080
              name: http
            resources:
              limits:
                cpu: 200M
                memory: 100Mi
              requests:
                cpu: 100m
                memory: 50Mi
    这个prometheus-operatord会自动创建名为monitoring.coreos.com的CRD资源
    
    # 通过Operator的配置部署Prometheus
    apiVersion: monitoring.coreos.com/v1
    kind: Prometheus
    metadata:
      name: prometheus
      labels:
        app: promethus
        prometheus: prometheus
    spec:
      replicas: 2
      baseImage: quay.io/prometheus/prometheus
      version: v2.10.0
      serviceMonitorSelector:
        matchLabels:
          service-monitor: function
      resources:
          requests:
            memory: 300Mi
    
    ---
    apiVersion: v1 
    kind: Service
    metadata:
      name: prometheus
      labels:
        app: prometheus
        prometheus: prometheus
    spec:
      selector:
        prometheus: prometheus
      ports:
      - name: http
        port: 9090
    
    # 确认prometheus operator和prometheus服务正常
    kubectl get pods

    d

    一入运维深似海,从此不见彼岸花
  • 相关阅读:
    os.mkdir()与 shutil.rmtree()对文件夹的 创建与删除
    tf.assign_add
    任意图像尺寸变成目标尺寸(包含相应的boxes的变换)
    文件的读取(txt文件)
    tensorflow中使用变量作用域及tf.variable(),tf,getvariable()与tf.variable_scope()的用法
    python中字典的建立
    图像上划凸多边形(convexHull()函数)
    Cypress 系列之----01 安装和使用
    Excel应用----制作二级下拉菜单【转】
    Selenium系列之--08 操作已打开的浏览器
  • 原文地址:https://www.cnblogs.com/cn-jasonho/p/13362180.html
Copyright © 2020-2023  润新知