• bzoj 4008: [HNOI2015]亚瑟王


    4008: [HNOI2015]亚瑟王

    2017-08-29


    Description

    小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑。

    他决定,在脱坑之前,最后再来打一盘亚瑟王。既然是最后一战,就一定要打得漂亮。众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的。作为一个非洲人,同时作为一个前 OIer,小 K 自然是希望最大化造成伤害的期望值。但他已经多年没写过代码,连 Spaly都敲不对了,因此,希望你能帮帮小 K,让他感受一下当欧洲人是怎样的体验。 
    本题中我们将考虑游戏的一个简化版模型。 
    玩家有一套卡牌,共 n张。游戏时,玩家将 n 张卡牌排列成某种顺序,排列后将卡牌按从前往后依次编号为 1 ~  n。本题中,顺序已经确定,即为输入的顺序。每张卡牌都有一个技能。第 i 张卡牌的技能发动概率为 pi,如果成功发动,则会对敌方造成di点伤害。也只有通过发动技能,卡牌才能对敌方造成伤害。基于现实因素以及小K非洲血统的考虑,pi不会为 0,也不会为 1,即 0 < pi < 1。 
    一局游戏一共有 r 轮。在每一轮中,系统将从第一张卡牌开始,按照顺序依次考虑每张卡牌。在一轮中,对于依次考虑的每一张卡牌: 
    1如果这张卡牌在这一局游戏中已经发动过技能,则 
    1.1 如果这张卡牌不是最后一张,则跳过之(考虑下一张卡牌); 否则(是最后一张),结束这一轮游戏。 
    2否则(这张卡牌在这一局游戏中没有发动过技能),设这张卡牌为第 i 张 
    2.1将其以 pi的概率发动技能。 
    2.2如果技能发动,则对敌方造成 di点伤害,并结束这一轮。 
    2.3如果这张卡牌已经是最后一张(即 i 等于n),则结束这一轮;否则,考虑下一张卡牌。 
    请帮助小 K 求出这一套卡牌在一局游戏中能造成的伤害的期望值。 

    Input

    输入文件的第一行包含一个整数 T,代表测试数据组数。 

    接下来一共 T 组数据。 
    每组数据的第一行包含两个用空格分开的整数 n和r,分别代表卡牌的张数和游戏的轮数。 
    接下来 n行,每行包含一个实数和一个整数,由空格隔开,描述一张卡牌。第i 行的两个数为 pi和 di,分别代表第 i 张卡牌技能发动的概率(实数)和技能发动造成的伤害(整数)。保证 pi最多包含 4位小数,且为一个合法的概率。 

    Output

     对于每组数据,输出一行,包含一个实数,为这套卡牌在这一局游戏中造成的伤害的期望值。对于每一行输出,只有当你的输出和标准答案的相对误差不超过10^-8时——即|a-o|/a<=10-8时(其中a是标准答案,o是输出),你的输出才会被判为正确。

    建议输出10 位小数。 

    Sample Input

    1
    3 2
    0.5000 2
    0.3000 3
    0.9000 1

    Sample Output

    3.2660250000

     这题面有毒……
    一个转移方程不好想的dp(反正我是没想出来x)
    这个dp就不能求什么设什么了(葵花宝典第一招大失败x)
    f[i][j]表示考虑前i张牌,游戏剩余j轮←到达这个状态的概率
    从前往后转移
    对于每张牌(i+1)
    如果这张牌在接下来的j轮都不出,那么考虑下一张,转移到f[i+1][j],概率是(1-p[i])^j
    如果这张牌在之后的j轮内打了出去,考虑下一轮,转移到f[i+1][j-1],概率是1-(1-p[i])^j,打出的伤害加到ans中
    (1-p[i])^j可以预处理一下(pw[i][j])
    最后就是记得要把f[0][r]设为1(考虑0张牌,还有r轮,游戏刚开始,概率当然是1)
    就这样喵>_<
    有哪里没说全的话就丢给s好了
    附代码
    #include<iostream>
    #include<cstdio>
    #include<cstring> 
    using namespace std;
    const int N=250,R=150;
    int t,n,r;
    double p[N],d[N],f[N][R],pw[N][R]; //f[i][j]=考虑前i张牌,剩余j轮 
    int main()
    {
        scanf("%d",&t);
        while(t--)
        {
            scanf("%d%d",&n,&r);
            for(int i=1;i<=n;++i){scanf("%lf%lf",&p[i],&d[i]);}
            memset(f,0,sizeof(f));
            for(int i=1;i<=n;++i)
            {
                pw[i][0]=1;
                for(int j=1;j<=r;++j)
                  pw[i][j]=pw[i][j-1]*(1-p[i]);
            }
            double ans=0;
            f[0][r]=1;
            for(int i=0;i<=n;++i)
            for(int j=0;j<=r;++j)
            {
                f[i+1][j]+=f[i][j]*pw[i+1][j];//没出牌,考虑下一张 
                if(j)
                {
                    f[i+1][j-1]+=f[i][j]*(1-pw[i+1][j]);//出牌,考虑下一轮 
                    ans+=f[i][j]*(1-pw[i+1][j])*d[i+1];
                }
            }
            printf("%.10lf
    ",ans);
        }
        return 0;
    } 
    4008(wypx)

    by:wypx


     总之就是以上了,用w解释的时间我改了一下样例解释。就是看文字太烦了,怎么会有人喜欢阅读那么无聊的东西

     样例解释0表示这一轮没有发动spell card
     
    因为是期望,所以先不考虑什么spell card是什么,就单算每一次概率就好了poi
    其实把伤害那个拆开,比如5拆成(2+3)*0.15和总共是等价的.(反正对)
    就这样了
    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cstdlib>
    using namespace std;
    int read(){
        char ch=getchar();
        int an=0,f=1;
        while(!('0'<=ch&&ch<='9')){if(ch=='-')f=-f;else ch=getchar();}
        while('0'<=ch&&ch<='9'){an=an*10+(ch-'0');ch=getchar();}
        return an*f;
    }
    double p[250],dp[250][250],pw[250][250];
    int d[250],n,r,T;
    double ans;
    void G(){
        for(int i=0;i<=n;i++)p[i]=d[i]=0;
        for(int i=0;i<=n;i++)
            for(int j=0;j<=r;j++)dp[i][j]=pw[i][j]=0;
        ans=0;
    }
    int main(){
        T=read();
        while(T){T--;
            n=read();r=read();
            for(int i=1;i<=n;i++){scanf("%lf",&p[i]);d[i]=read();}
            for(int i=1;i<=n;i++){
                pw[i][0]=1;
                for(int j=1;j<=r;j++)pw[i][j]=pw[i][j-1]*(1-p[i]);
            }
            dp[0][r]=1;
            for(int i=0;i<n;i++)
                for(int j=0;j<=r;j++){
                    dp[i+1][j]+=dp[i][j]*(pw[i+1][j]);
                    if(j-1>=0){
                        dp[i+1][j-1]+=dp[i][j]*(1-pw[i+1][j]);
                        ans+=dp[i][j]*d[i+1]*(1-pw[i+1][j]);
                    }
                }
        printf("%0.10f
    ",ans);
        G();
        }
        return 0;
    }
    s_a_b_e_r

    by:s_a_b_e_r

     
    w:小W不慎被LL邪教洗脑了x
    s:LL音乐真好听♪,一块来抽UR啊

     

  • 相关阅读:
    三阶幻方
    夺冠概率
    2013年5月5号蓝桥杯画图
    回型嵌套
    Modelsim6.5g SE
    Modelsim存波形文件
    Modelsim仿真时用Hex格式显示数据的方法
    Modelsim仿真时的Debug命令:$display和$monitor
    Modelsim报错(一)
    【转】为什么有的LDO的输出输入必须用陶瓷电容 ,而有的却规定必须用钽电容?
  • 原文地址:https://www.cnblogs.com/ck666/p/7447225.html
Copyright © 2020-2023  润新知