• Bzoj3160:万径人踪灭


    题面

    Bzoj

    Sol

    求不连续回文子序列的个数
    (ans=)回文子序列个数-连续回文子序列个数
    即回文子序列个数-回文子串个数
    后面直接(Manacher)就好了
    考虑前面的
    枚举对称轴,设(f[i])表示对称轴(i)两边相同字符的对数
    那么最终答案就是(sum 2^{f[i]}-1)
    考虑求(f[i])
    只有当原串中的两个字符相同才会有贡献
    也就是(s[i-x]=s[i+x])
    单独考虑(a)(b)的贡献
    (f[i]=sum [s[i-x]==s[i+x]])
    设当前考虑(a)的贡献
    把是(a)的设为(1)不是的为(0),做个卷积就可以求出(f)
    那么就可以(FFT)
    注意两个字符之间也算对称轴

    # include <bits/stdc++.h>
    # define RG register
    # define IL inline
    # define Fill(a, b) memset(a, b, sizeof(a))
    using namespace std;
    typedef long long ll;
    const int Zsy(1e9 + 7); 
    const int _(5e5 + 5);
    const double PI(acos(-1));
    
    int n, p[_];
    ll f[_];
    int N, M, l, r[_];
    char s[_], a[_];
    struct Complex{
        double real, image;
        IL Complex(){
    		real = image = 0;
    	}
    	
        IL Complex(RG double a, RG double b){
    		real = a, image = b;
    	}
    	
        IL Complex operator +(RG Complex B){
    		return Complex(real + B.real, image + B.image);
    	}
    	
        IL Complex operator -(RG Complex B){
    		return Complex(real - B.real, image - B.image);
    	}
    	
        IL Complex operator *(RG Complex B){
    		return Complex(real * B.real - image * B.image, real * B.image + image * B.real);
    		}
    } A[_], B[_];
    
    IL void FFT(RG Complex *P, RG int opt){
    	for(RG int i = 0; i < N; ++i) if(i < r[i]) swap(P[i], P[r[i]]);
    	for(RG int i = 1; i < N; i <<= 1){
    		RG Complex W(cos(PI / i), opt * sin(PI / i));
    		for(RG int j = 0, p = i << 1; j < N; j += p){
    			RG Complex w(1, 0);
    			for(RG int k = 0; k < i; ++k, w = w * W){
    				RG Complex X = P[k + j], Y = w * P[k + j + i];
    				P[k + j] = X + Y, P[k + j + i] = X - Y;
    			}
    		}
    	}
    }
    
    IL void Mul(){
    	FFT(A, 1);
    	for(RG int i = 0; i < N; ++i) B[i] = A[i] * A[i];
    	FFT(B, -1);
    	for(RG int i = 0; i < N; ++i) B[i].real = B[i].real / N + 0.5;
    	for(RG int i = 1; i <= M; ++i) f[i] += ((ll)(B[i].real) + 1) >> 1;
    }
    
    IL ll Manacher(){
    	RG ll ans = 0; RG int mx = 0, len = 1; a[1] = '#';
    	for(RG int i = 1; i <= n; ++i) a[++len] = s[i], a[++len] = '#';
    	for(RG int i = 1, id = 0, mx = 0; i <= len; ++i){
    		if(i < mx) p[i] = min(mx - i, p[(id << 1) - i]);
    		while(i - p[i] && i + p[i] <= len && a[i - p[i]] == a[i + p[i]]) ++p[i];
    		if(p[i] + i > mx) mx = p[i] + i, id = i;
    		(ans += p[i] >> 1) %= Zsy;
    	}
    	return ans;
    }
    
    IL ll Pow(RG ll x, RG ll y){
    	RG ll ret = 1;
    	for(; y; y >>= 1, x = x * x % Zsy)
    		if(y & 1) ret = ret * x % Zsy;
    	return ret;
    }
    
    int main(RG int argc, RG char* argv[]){
    	scanf(" %s", s + 1); n = strlen(s + 1);
    	for(M = n + n, N = 1; N <= M; N <<= 1) ++l;
    	for(RG int i = 0; i < N; ++i) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
    	RG ll ans = -Manacher();
    	for(RG int i = 0; i < N; ++i) A[i] = Complex(s[i] == 'a', 0);
    	Mul();
    	for(RG int i = 0; i < N; ++i) A[i] = Complex(s[i] == 'b', 0);
    	Mul();
    	for(RG int i = 1; i <= M; ++i) (ans += Pow(2, f[i]) - 1) % Zsy;
    	printf("%lld
    ", (ans + Zsy) % Zsy);
    	return 0;
    }
    
  • 相关阅读:
    Javascript | 模拟mvc实现点餐程序
    DataTables实现按分组小计
    [Webcast]Silverlight探秘系列课程
    python 环境搭建
    MailMessage
    WebRequest
    消息队列(Message Queue)
    c# 缓存
    c# 反射
    数据库连接超时
  • 原文地址:https://www.cnblogs.com/cjoieryl/p/8445731.html
Copyright © 2020-2023  润新知