• 吴恩达Coursera, 机器学习专项课程, Machine Learning:Advanced Learning Algorithms第三周编程作业


    吴恩达Coursera, 机器学习专项课程, Machine Learning:Advanced Learning Algorithms第三周所有jupyter notebook文件:

    吴恩达,机器学习专项课程, Advanced Learning Algorithms第三周所有Python编程文件

    本次作业

    Exercise 1

    # UNQ_C1
    # GRADED CELL: eval_mse
    def eval_mse(y, yhat):
        """ 
        Calculate the mean squared error on a data set.
        Args:
          y    : (ndarray  Shape (m,) or (m,1))  target value of each example
          yhat : (ndarray  Shape (m,) or (m,1))  predicted value of each example
        Returns:
          err: (scalar)             
        """
        m = len(y)
        err = 0.0
        for i in range(m):
        ### START CODE HERE ### 
            err +=  (y[i]-yhat[i])**2          
        err = err /2/ m  
        ### END CODE HERE ### 
        
        return(err)
    

    Exercise 2

    # UNQ_C2
    # GRADED CELL: eval_cat_err
    def eval_cat_err(y, yhat):
        """ 
        Calculate the categorization error
        Args:
          y    : (ndarray  Shape (m,) or (m,1))  target value of each example
          yhat : (ndarray  Shape (m,) or (m,1))  predicted value of each example
        Returns:|
          cerr: (scalar)             
        """
        m = len(y)
        incorrect = 0
        for i in range(m):
        ### START CODE HERE ### 
            if y[i] != yhat[i]:
                incorrect += 1
        cerr = incorrect / m
            
        ### END CODE HERE ### 
        
        return(cerr)
    

    Exercise 3

    # UNQ_C3
    # GRADED CELL: model
    import logging
    logging.getLogger("tensorflow").setLevel(logging.ERROR)
    
    tf.random.set_seed(1234)
    model = Sequential(
        [
            ### START CODE HERE ### 
    #         tf.keras.Input(shape=(2,)),
            Dense(120,activation='relu',name='layer1'),
            Dense(40,activation='relu',name='layer2'),
            Dense(6,activation='linear',name='layer3')
      
            ### END CODE HERE ### 
    
        ], name="Complex"
    )
    model.compile(
        ### START CODE HERE ### 
        loss= tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
        optimizer=tf.keras.optimizers.Adam(0.01),
        ### END CODE HERE ### 
    )
    

    Exercise 4

    # UNQ_C4
    # GRADED CELL: model_s
    
    tf.random.set_seed(1234)
    model_s = Sequential(
        [
            ### START CODE HERE ### 
            Dense(6,activation='relu',name='layer1'),
            Dense(6,activation='linear',name='layer2')   
            ### END CODE HERE ### 
        ], name = "Simple"
    )
    model_s.compile(
        ### START CODE HERE ### 
        loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
        optimizer = tf.keras.optimizers.Adam(0.01),
        ### START CODE HERE ### 
    )
    

    Exercise 5

    # UNQ_C5
    # GRADED CELL: model_r
    
    tf.random.set_seed(1234)
    model_r = Sequential(
        [
            ### START CODE HERE ### 
            Dense(120,activation='relu',kernel_regularizer=tf.keras.regularizers.l2(0.1),name='layer1'),
            Dense(40,activation='relu',kernel_regularizer=tf.keras.regularizers.l2(0.1),name='layer2'), 
            Dense(6,activation='linear',name='layer3')
            ### START CODE HERE ### 
        ], name= 'aaa'
    )
    model_r.compile(
        ### START CODE HERE ### 
        loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
        optimizer = tf.keras.optimizers.Adam(0.01),
        ### START CODE HERE ### 
    )
    
  • 相关阅读:
    python json模块出现Invalid control character这个异常的原因
    KMS服务,使用命令激活windows/office
    vscode Python文件头部信息
    MIMIC-III Clinical Database 翻译
    autohotkey 设置
    DeepLearning 写代码常用
    VScode 个人设置
    随机种子设置
    samba配置
    jieba 分词不显示日志
  • 原文地址:https://www.cnblogs.com/chuqianyu/p/16439105.html
Copyright © 2020-2023  润新知