吴恩达Coursera, 机器学习专项课程, Machine Learning:Advanced Learning Algorithms第三周所有jupyter notebook文件:
本次作业
Exercise 1
# UNQ_C1
# GRADED CELL: eval_mse
def eval_mse(y, yhat):
"""
Calculate the mean squared error on a data set.
Args:
y : (ndarray Shape (m,) or (m,1)) target value of each example
yhat : (ndarray Shape (m,) or (m,1)) predicted value of each example
Returns:
err: (scalar)
"""
m = len(y)
err = 0.0
for i in range(m):
### START CODE HERE ###
err += (y[i]-yhat[i])**2
err = err /2/ m
### END CODE HERE ###
return(err)
Exercise 2
# UNQ_C2
# GRADED CELL: eval_cat_err
def eval_cat_err(y, yhat):
"""
Calculate the categorization error
Args:
y : (ndarray Shape (m,) or (m,1)) target value of each example
yhat : (ndarray Shape (m,) or (m,1)) predicted value of each example
Returns:|
cerr: (scalar)
"""
m = len(y)
incorrect = 0
for i in range(m):
### START CODE HERE ###
if y[i] != yhat[i]:
incorrect += 1
cerr = incorrect / m
### END CODE HERE ###
return(cerr)
Exercise 3
# UNQ_C3
# GRADED CELL: model
import logging
logging.getLogger("tensorflow").setLevel(logging.ERROR)
tf.random.set_seed(1234)
model = Sequential(
[
### START CODE HERE ###
# tf.keras.Input(shape=(2,)),
Dense(120,activation='relu',name='layer1'),
Dense(40,activation='relu',name='layer2'),
Dense(6,activation='linear',name='layer3')
### END CODE HERE ###
], name="Complex"
)
model.compile(
### START CODE HERE ###
loss= tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=tf.keras.optimizers.Adam(0.01),
### END CODE HERE ###
)
Exercise 4
# UNQ_C4
# GRADED CELL: model_s
tf.random.set_seed(1234)
model_s = Sequential(
[
### START CODE HERE ###
Dense(6,activation='relu',name='layer1'),
Dense(6,activation='linear',name='layer2')
### END CODE HERE ###
], name = "Simple"
)
model_s.compile(
### START CODE HERE ###
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer = tf.keras.optimizers.Adam(0.01),
### START CODE HERE ###
)
Exercise 5
# UNQ_C5
# GRADED CELL: model_r
tf.random.set_seed(1234)
model_r = Sequential(
[
### START CODE HERE ###
Dense(120,activation='relu',kernel_regularizer=tf.keras.regularizers.l2(0.1),name='layer1'),
Dense(40,activation='relu',kernel_regularizer=tf.keras.regularizers.l2(0.1),name='layer2'),
Dense(6,activation='linear',name='layer3')
### START CODE HERE ###
], name= 'aaa'
)
model_r.compile(
### START CODE HERE ###
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer = tf.keras.optimizers.Adam(0.01),
### START CODE HERE ###
)