• Python之序列化模块


    序列化模块

      导入: import module 

      序列化:数据类型和str之间的转换,数据持久化(存储),网络交互(传输)本质:将程序中的数据类型转成str

      反序列化:将字符串转换为其本来的数据类型

      序列化和反序列化这些操作都是一次性的,一次转换,一次还原  

    (1) json (存文件,网络传输)

      json模块只给我们提供了四个功能:

        序列化:dump,dumps

        反序列化:load, loads
      
    dumps和loads:对数据类型进行序列化和反序列化
    import json
    
    dic = {'k1': 'v1', 'k2': 'v2', 'k3': 'v3'}
    
    # 序列化:将一个字典转换成一个字符串
    str_dic = json.dumps(dic)  
    
    print(type(str_dic), str_dic)  
    # 结果:
    # 注意,json转换完的字符串类型的字典中的字符串是由""表示的
    # <class 'str'> {"k3": "v3", "k1": "v1", "k2": "v2"}
    
    
    # 反序列化:将一个字符串格式的字典转换成一个字典
    # 注意,要用json的loads功能处理的字符串类型的字典中的字符串必须由""表示
    dic2 = json.loads(str_dic)  
    
    print(type(dic2), dic2)  
    # 结果:
    # <class 'dict'> {'k1': 'v1', 'k2': 'v2', 'k3': 'v3'}
    
    list_dic = [1, ['a', 'b', 'c'], 3, {'k1': 'v1', 'k2': 'v2'}]
    str_dic = json.dumps(list_dic)  # ps:也可以处理嵌套的数据类型
    print(type(str_dic), str_dic)  
    # 结果:
    # <class 'str'> [1, ["a", "b", "c"], 3, {"k1": "v1", "k2": "v2"}]
    
    list_dic2 = json.loads(str_dic)
    print(type(list_dic2), list_dic2)  
    # 结果:
    # <class 'list'> [1, ['a', 'b', 'c'], 3, {'k1': 'v1', 'k2': 'v2'}]

        

      dump和load:对文件句柄进行序列化和反序列化

    import json
    
    f = open('json_file', 'w')
    dic = {'k1': 'v1', 'k2': 'v2', 'k3': 'v3'}
    
    # dump方法接收一个文件句柄,直接将字典转换成json字符串写入文件
    json.dump(dic, f)
    f.close()
    
    f = open('json_file')
    
    # load方法接收一个文件句柄,直接将文件中的json字符串转换成数据结构返回
    dic2 = json.load(f)
    f.close()
    print(type(dic2), dic2)

        

      ensure_ascii关键字:默认是True,表示按照ascii的形式显示,设置为False的时候,表是按照原来的文本样式显示(主要针对中文)
    import json
    
    f = open('file', 'w')
    json.dump({'国籍': '中国'}, f)
    ret = json.dumps({'国籍': '中国'})
    f.write(ret + '
    ')
    json.dump({'国籍': '美国'}, f, ensure_ascii=False)
    ret = json.dumps({'国籍': '美国'}, ensure_ascii=False)
    f.write(ret + '
    ')
    f.close()
    
    # 写到文件中的结果:
    # {"u56fdu7c4d": "u4e2du56fd"}{"u56fdu7c4d": "u4e2du56fd"}
    # {"����": "����"}{"����": "����"}(这里是因为文件打开的模式不对)
    

      

    (2) pickle 模块

      pickle模块提供了四个功能:dumps、dump(序列化,存)、loads(反序列化,读)、load
      (不仅可以序列化字典,列表...可以把python中任意的数据类型序列化)
        pickle,用于python特有的类型 和 python的数据类型间进行转换

      pickle--只能写进去,不能追加

        示例1:

    import pickle
    
    dic = {'k1': 'v1', 'k2': 'v2', 'k3': 'v3'}
    str_dic = pickle.dumps(dic)
    print(str_dic)  # 一串二进制内容
    
    dic2 = pickle.loads(str_dic)
    print(dic2)  # 字典
    
    # 结果:
    # b'x80x03}qx00(Xx02x00x00x00k1qx01Xx02x00x00x00v1qx02Xx02x00x00x00k2qx03Xx02x00x00x00v2qx04Xx02x00x00x00k3qx05Xx02x00x00x00v3qx06u.'
    # {'k1': 'v1', 'k2': 'v2', 'k3': 'v3'}
    

      

        示例2:

    import time
    import pickle
    
    struct_time = time.localtime(1000000000)
    print(struct_time)
    
    f = open('pickle_file', 'wb')
    pickle.dump(struct_time, f)
    f.close()
    
    f = open('pickle_file', 'rb')
    struct_time2 = pickle.load(f)
    f.close()
    
    print(struct_time2.tm_year)
    
    
    # 结果:
    # time.struct_time(tm_year=2001, tm_mon=9, tm_mday=9, tm_hour=9, tm_min=46, tm_sec=40, tm_wday=6, tm_yday=252, tm_isdst=0)
    # 2001

      json和pickle模块对比:

        json,用于字符串 和 python数据类型间进行转换
        pickle,用于python特有的类型 和 python的数据类型间进行转换(可以把python中任意的数据类型序列化)

        json--能处理的很少
        pickle--可以序列化python里没有的,自己定义的数据类型

        json---是所有p编程语言通用的一种数据类型---网络编程
        pickle---可以序列化一些自定义的数据类型---游戏

     

    (3)shelve---只提供了open 方法

       shelve也是python提供给我们的序列化工具,比pickle用起来更简单一些。
    shelve只提供给我们一个open方法,是用key来访问的,使用起来和字典类似。
    import shelve
    
    f = shelve.open('shelve_file')
    f['key'] = {'int': 10, 'float': 9.5, 'string': 'Sample data'}  # 直接对文件句柄操作,就可以存入数据
    f.close()
    
    import shelve
    
    f1 = shelve.open('shelve_file')
    existing = f1['key']  # 取出数据的时候也只需要直接用key获取即可,但是如果key不存在会报错
    f1.close()
    print(existing)
    
    # 结果:
    # {'int': 10, 'float': 9.5, 'string': 'Sample data'}
     
        这个模块有个限制,它不支持多个应用同一时间往同一个DB进行写操作。
        所以当我们知道我们的应用如果只进行读操作,可以让shelve通过只读方式打开DB
    import shelve
    
    f = shelve.open('shelve_file', flag='r')
    existing = f['key']
    f.close()
    print(existing)

        由于shelve在默认情况下是不会记录待持久化对象的任何修改的,所以我们在shelve.open()时候需要修改默认参数,否则对象的修改不会保存。
    import shelve
    f1 = shelve.open('shelve_file')
    print(f1['key'])
    f1['key']['new_value'] = 'this was not here before'
    f1.close()
    
    f2 = shelve.open('shelve_file', writeback=True)
    print(f2['key'])
    f2['key']['new_value'] = 'this was not here before'
    f2.close()
     
        writeback方式有优点也有缺点。优点是减少了我们出错的概率,并且让对象的持久化对用户更加的透明了;
        但这种方式并不是所有的情况下都需要,
        首先,使用writeback以后,shelf在open()的时候会增加额外的内存消耗,并且当DB在close()的时候会将缓存中的每一个对象都写入到DB,这也会带来额外的等待时间。
        因为shelve没有办法知道缓存中哪些对象修改了,哪些对象没有修改,因此所有的对象都会被写入

        

  • 相关阅读:
    浅谈python web三大框架
    Mysql异常
    格式化时间转换
    MySql存储日期为long型,判断时间大小
    Linux下部署项目
    excel
    Tomcate的启动问题
    计算时间差
    地图系的转换
    关于获取本机真实IP
  • 原文地址:https://www.cnblogs.com/chitalu/p/9681946.html
Copyright © 2020-2023  润新知