• 【模式识别与机器学习】——3.1线性判别函数


    3.1线性判别函数

    3.1.1两类问题的判别函数

    (1)以二维模式样本为例

    (2)用判别函数进行模式分类依赖的两个因素

    ① 判别函数的几何性质:线性的和非线性的函数。 线性的是一条直线; 非线性的可以是曲线、折线等; 线性判别函数建立起来比较简单(实际应用较多); 非线性判别函数建立起来比较复杂。

    ② 判别函数的系数:判别函数的形式确定后,主要就是确定判别函数的系数问题。 只要被研究的模式是可分的,就能用给定的模式样本集来确定判别函数的系数。

    3.1.2  n维线性判别函数的一般形式

    (1)一个n维线性判别函数的一般形式:

     

    (2)两类情况:判别函数d(x)

     

    (3)多类情况:

    设模式可分成ω1, ω2,…, ωM共M类,则有三种划分方法

    ① 多类情况1:

    问题描述:用线性判别函数将属于ωi类的模式与不属于ωi类的模式分开,

    其判别函数为:

            i = 1, 2, …, M

    这种情况称为两分法,即把M类多类问题分成M个两类问题,因此共有M个判别函数,对应的判别函数的权向量为wi, i = 1, 2, …, M。

    图例:对一个三类情况,每一类模式可用一个简单的直线判别界面将它与其它类模式分开。例如,对的模式,应同时满足:d1(x)>0,d2(x)<0,d3(x)<0

    不确定区域:若对某一模式区域,di(x)>0的条件超过一个,或全部di(x)<0,i = 1, 2, …, M,则分类失败,这种区域称为不确定区域(IR)。

    示例1:设有一个三类问题,其判别式为:

        d1(x)= -x1 + x2,d2(x)= x1 + x2 - 5,d3(x)= -x2 + 1

    则对一个模式x=(6, 5)T,判断其属于哪一类。将x=(6, 5)T代入上述判别函数,得:

        d1(x) = -1,故d1(x)<0

        d2(x) = 6,故d2(x)>0

        d3(x) = -4,故d3(x)<0

    从而

    示例2:假若x=(3, 5)T,则

        d1(x) = 2>0

        d2(x) = 3>0

        d3(x) = -2<0

    分类失败。

    ② 多类情况2

    问题描述:采用每对划分,即ωij两分法,此时一个判别界面只能分开两种类别,但不能把它与其余所有的界面分开。

    其判别函数为:

              若dij(x)>0,,则重要性质:dij = -dji

    图例:对一个三类情况,d12(x)=0仅能分开ω1和ω2类,不能分开ω1和ω3类。

    若要分开M类模式,共需M(M-1)/2个判别函数。

    不确定区域:若所有dij(x),找不到,dij(x)>0的情况。

    示例 1:设有一个三类问题,其判别函数为:

        d12(x)= -x1 - x2 + 5,d13(x)= -x1 + 3,d23(x)= -x1 + x2

    若x=(4, 3)T,则:d12(x) = -2,d13(x) = -1,d23(x) = -1

    有:

       

    从而

    示例2:若x=(2.8, 2.5)T,则:d12(x) = -0.3,d13(x) = 0.2,d23(x) = -0.3

    有:

        

    分类失败。

    ③ 多类情况3

    这是没有不确定区域的ωij两分法。假若多类情况2中的dij可分解成:dij(x) = di(x) - dj(x) = (wi – wj)Tx,则dij(x)>0相当于di(x)>dj(x),这时不存在不确定区域。

    此时,对M类情况应有M个判别函数

          

     即di(x)>dj(x),,i, j = 1,2,…,M该分类的特点是把M类情况分成M-1个两类问题。

    示例 1:设有一个三类问题的模式分类器,其判别函数为:

        d1(x)= -x1 + x2,d2(x)= x1 + x2 - 1,d3(x)= -x2

    属于ω1类的区域应满足d1(x)>d2(x)且d1(x)>d3(x),ω1类的判别界面为:

        d12(x)= d1(x)-d2(x) = -2x1 + 1 = 0

        d13(x)= d1(x)-d3(x) = -x1 + 2x2 = 0

    属于ω2类的区域应满足d2(x)>d1(x)且d2(x)>d3(x),ω2类的判别界面为:

        d21(x)= d2(x)-d1(x) = 2x1 - 1 = 0,可看出d21(x)=-d12(x)

        d23(x)= d2(x)-d3(x) = x1 + 2x2 - 1= 0

    属于ω2类的区域应满足d3(x)>d1(x)且d3(x)>d2(x),ω3类的判别界面为:

        d31(x) = -d13(x) = x1 - 2x2 = 0

        d32(x) = -d23(x) = -x1 - 2x2 + 1= 0

    【示例】

    若有模式样本x=(1, 1)T,则:d1(x) = 0,d2(x) = 1,d3(x) = -1

    从而:d2(x)>d1(x)且d2(x)>d3(x),故

    小结:

      线性可分 模式分类若可用任一个线性函数来划分,则这些模式就称为线性可分的,否则就是非线性可分的。 一旦线性函数的系数wk被确定,这些函数就可用作模式分类的基础。

      多类情况1和多类情况2的比较 对于M类模式的分类,多类情况1需要M个判别函数,而多类情况2需要M*(M-1)/2个判别函数,当M较大时,后者需要更多的判别式(这是多类情况2的一个缺点)。 采用多类情况1时,每一个判别函数都要把一种类别的模式与其余M-1种类别的模式分开,而不是将一种类别的模式仅与另一种类别的模式分开。 由于一种模式的分布要比M-1种模式的分布更为聚集,因此多类情况2对模式是线性可分的可能性比多类情况1更大一些(这是多类情况2的一个优点)。

     

  • 相关阅读:
    全世界最好听的钢琴曲
    清华“70后”院长刘云浩——生命在于运动,梦想从未止步 | 新“清”年特辑
    Android---60---Notification 通知栏的简单使用
    面向对象的三大特性
    一道淘汰85%面试者的百度开发人员面试题?
    Linux下基于Erlang的高并发TCP连接压力实验
    2014南瑞暑期实习面试笔试经历
    Oracle cloud control 12c 怎样改动sysmanpassword
    JEECG社区 一个微信教育站点案例源代码分享
    stm32智能小车之路之小车启动
  • 原文地址:https://www.cnblogs.com/chihaoyuIsnotHere/p/9720457.html
Copyright © 2020-2023  润新知