• 关于积性函数的一些知识


    前言

    最近在学习一些玄学的数学知识(如莫比乌斯反演杜教筛)时,我发现自己对于一些数学的理论知识了解得还不够多(不像(XRY)奆佬一样初一就把大学数学学完了),于是决定好好去学习一下这面的知识。

    例如关于积性函数的知识,就是比较重要的一块内容。

    定义

    什么是积性函数

    其实它的定义还是很好理解的:若对于一个数论函数(f(x)),已知(f(x)=1),且对于任意互质的正整数(p,q)都满足(f(pq)=f(p)f(q)),则称该函数(f(x))为一个积性函数。

    这么说来,貌似我们比较常用的如(phi(n))(mu(n))等函数似乎都属于积性函数。

    实际上,我们平时常见的一些数论函数实际上都属于积性函数

    由此可见积性函数之重要性。

    常见种类

    下面我们介绍一些比较常见的积性函数:

    欧拉函数:(phi(n))

    该函数表示的是不大于(n)(n)互质的数的个数。

    表达式:(phi(n)=sum_{i=1}^n[gcd(n,i)==1])

    莫比乌斯函数:(mu(n))

    关于它可以去看看这一篇博客:初学莫比乌斯反演

    约数个数:(d(n))

    表达式:(d(n)=sum_{i|n} 1)

    约数和函数:(sigma(n))

    表达式:(sigma(n)=sum_{i|n}i)

    一些完全积性函数

    下面介绍一些比较简单、但是用处很大的完全积性函数。(关于它们的用处可以参考博客初学狄利克雷卷积

    对了,首先要讲一讲什么是完全积性函数。

    上面在积性函数的定义中提到,对于任意互质的正整数(p,q)满足(f(pq)=f(p)f(q))的函数是积性函数,而把"互质"这个条件去掉,得到的函数就是完全积性函数。

    常见的完全积性函数有一下几个:

    元函数:(e(n))

    表达式:(e(n)=[n==1])

    (不知道是否有人跟我一样想到了莫比乌斯函数的某个性质(sum_{d|n}mu(d)=[n==1])

    恒等函数:(I(n))

    表达式:(I(n)=1)

    单位函数:(id(n))

    表达式:(id(n)=n)

    后记

    关于积性函数的一些知识差不多就是这些了。

    关于更多的内容,可以去看一下另一篇博客:初学狄利克雷卷积,里面也涉及到一些与积性函数相关的内容。

  • 相关阅读:
    postgres导入和导出
    postgres日常操作
    NumPy Ndarray 对象
    NumPy 简介及安装
    Python两个内置函数locals 和globals
    python之multiprocessing多进程
    postgres外部表
    css中文本超出部分省略号代替
    js中的作用域链
    css中clip:rect矩形剪裁功能
  • 原文地址:https://www.cnblogs.com/chenxiaoran666/p/MultyFunction.html
Copyright © 2020-2023  润新知