• 算法


    最近看了写文章,发现自己的算法了解的比较少,于是开始找教程开始彻底的学习一下算法<<韩顺平-图解java数据结构和算法>>。

    1.算法的时间复杂度

    1.1.时间频度:一个算法花费的时间与算法中语句执行次数成正比例,那个算法中语句执行次数多,它花费时间就多。一个算法的语句执行次数称为语句频度或者时间频度。记为T(n)

    表达式有三个特点:忽略常数项,忽略低次项,忽略系数

    1.2时间复杂度

       推算过程:a.一般情况下,算法中的基本操作语句的重复执行次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大的时候,T(n)/f(n)的极限值为不等于0的常数,则称f(n)是T(n)的同数量级函数。记做T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度,简称时间读咋读。

       b.T(n)不同,但是时间复杂不到可能相同。如T(n)=n2+7n+6 与 T(n)=3n2+2n+2他们的T(n)不同,但是时间复杂度相同,都是O(n2)

       c.计算时间复杂度的方法:

       用常数1代替运行时间中的所有加法常数

       修改后的运行次数函数中,只保留最高阶项

         去除最高阶项的系数

      常见时间复杂度

       常数阶 O(1)

       对数阶 O(log2n)

       线性阶O(n)

         线性对数阶O(log2n)

         平方阶 O(n2)

         立方阶O(n3)

         k次方阶O(n^k)

       指数阶O(2^n)

    排序算法:

    1.冒泡排序 时间复杂度(O(n^2)):

      通过对待排序下序列从前往后(从下标娇小的元素开始),依次比较相邻元素的值,若发现逆序则交换,使值较大的元素逐渐从前移向后部,就像水底下的气泡一样逐渐往上冒。因为排序的过程中,各元素不断的接近自己的位置,如果一趟比较下来没有进行过交换,说明序列有序,因此要在排序过程中设置一个标志flag判断元素是否进行交换,从而减少不必要的比较。

     1 public class BubbleSort {
     2     public static void main(String[] args) {
     3         int[] arr = {9,-1,22,10,33,45};
     4         int temp = 0;
     5         for (int i = 0; i < arr.length - 1; i++) {
     6             boolean flag = true; // 优化标识,当一次循环时所有位置没有发生变化,则标识该序列已经时有序的,可以跳出循环
     7             for (int j = 0; j < arr.length-1-i; j++) {
     8                 if(arr[i]>arr[i+1]){
     9                     temp = arr[i+1];
    10                     arr[i+1]=arr[i];
    11                     arr[i]=temp;
    12                     flag=false;
    13                 }
    14                 if(flag){
    15                     break;
    16                 }
    17             }
    18         }
    19         System.out.println(Arrays.toString(arr));
    20     }
    21 }

    2.选择排序 时间复杂度(O(n^2)):

      第一次从arr[0]-arr[n-1]中选择最小值,与arr[0]交换,第二次从arr[1]-arr[n-1]中选择最小值,与arr[1]进行交换,....总共通过n-1次没到一个排序从最小到最大的排序

     public static void selectSott(int[] arr) {
            int min = 0;
            for (int i = 0; i < arr.length - 1; i++) {
                min = arr[i];
                int minIndex = i;
                for (int j = i; j < arr.length - 1; j++) {
                    if (min > arr[j + 1]) {
                        min = arr[j+1];
                        minIndex=j+1;
                    }
                }
                arr[minIndex]=arr[i];
                arr[i] = min;
            }
        }
    

    3.插入排序

      插入式排序属于内部排序发,是对于欲排序的元素以插入的方式找寻该元素的适当位置,以达到排序的目的。把n个待排序的元素看成为一个有序表和一个无序表,开始时有序表中包含一个元素,无序表中包含n-1个元素,排序过程中每次从无序表中选取第一个元素,把它与有序表中的每个元素进行比较,将它插入到有序表中适当的位置,使之成为新的有序表

        public static void inertSort(int[] arr) {
            for (int i = 0; i < arr.length - 1; i++) {
                int insertIndex = i;
                int insertVal = arr[i + 1];
                while (insertIndex >= 0 && insertVal < arr[insertIndex]) {
                    arr[insertIndex + 1] = arr[insertIndex];
                    insertIndex--;
                }
                if (insertIndex + 1 != i) {
                    arr[insertIndex + 1] = insertVal;
                }
            }
    
        }
    

      

    4.希尔算法

       在直接插入排序算法中,每次插入一个数,使有序序列只增加1个节点,并且对插入下一个数没有提供任何帮助。如果比较相隔较远距离(称为增量)的数,使得数移动时能跨过多个元素,则进行一次比较就可能消除多个元素交换。D.L.shell于1959年在以他名字命名的排序算法中实现了这一思想。算法先将要排序的一组数按某个增量d分成若干组,每组中记录的下标相差d.对每组中全部元素进行排序,然后再用一个较小的增量对它进行,在每组中再进行排序。当增量减到1时,整个要排序的数被分成一组,排序完成。下面的函数是一个希尔排序算法的一个实现,初次取序列的一半为增量,以后每次减半,直到增量为1。希尔排序是不稳定的。

    // 希尔排序法一:交换法
       // 首先分为5组数据,每组2个数据 9,7 2,8 3,6 4,5 1,0 // 排序之后在分为2组, 每组5个数据 public static void shellSort(int[] arr) { int temp = 0; for (int i = arr.length / 2; i > 0; i = i / 2) { for (int j = i; j < arr.length; j++) { for (int k = j - i; k >= 0; k = k - i) { if (arr[k] > arr[k + i]) { temp = arr[k]; arr[k] = arr[k + i]; arr[k + i] = temp; } } } } }

    // 希尔排序法二  移动插入(效率比一高)
    public static void shellSort2(int[] arr) {
    for (int i = arr.length / 2; i > 0; i = i / 2) {
    for (int j = i; j < arr.length; j++) {
    int index = j;
    int indexValue = arr[index];
    while (index - i >= 0 && indexValue < arr[index - i]) {
    arr[index] = arr[index - i];
    index = index - i;
    }
    arr[index] = indexValue;
    }
    }
    }

     

    5.快速排序

      是对冒泡排序的改进,通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后在按此方法分对两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

     public static void quickSort(int[] arr, int left, int right) {
            int l = left;
            int r = right;
            int pivot = arr[(left + right) / 2];
            int temp = 0;
            while (l < r) {
                while (arr[l] < pivot) {
                    l++;
                }
                while (arr[r] > pivot) {
                    r--;
                }
                if (l >= r) {
                    break;
                }
                temp = arr[l];
                arr[l] = arr[r];
                arr[r] = temp;
                if (arr[l] == pivot) {
                    r--;
                }
                if (arr[r] == pivot) {
                    l++;
                }
            }
            if (l == r) {
                l++;
                r--;
            }
            if (left < r) {
                quickSort(arr, left, r);
            }
            if (right > l) {
                quickSort(arr, l, right);
            }
        }
    

      

    6.归并排序

      是利用归并的思想实现排序方法,该算法采用经典的分治策略(将问题分成一些小的问题然后递归求解,而治的阶段则将分的阶段得到的各答案修补在一起,即分而治之)

    public static void mergeSort(int arr[],int left,int right,int[] temp){
            if(left< right){
                int mid = (left + right) / 2;
                mergeSort(arr,left,mid,temp);
                mergeSort(arr,mid+1,right,temp);
                merge(arr,left,mid,right,temp);
            }
        }
    
    
        // 合并
        public static void merge(int[] arr, int left, int mid, int right, int[] temp) {
            int i = left; // 初始化i,左边有序序列的初始索引
            int j = mid + 1; // 初始化j,右边有序序列的初始索引
            int t = 0;//指向temp数组的当前索引
    
            while (i <= mid && j <= right) {
                if (arr[i] < arr[j]) {
                    temp[t] = arr[i];
                    t += 1;
                    i += 1;
                } else {
                    temp[t] = arr[j];
                    t += 1;
                    j += 1;
                }
            }
            while (i <= mid) {
                temp[t] = arr[i];
                t += 1;
                i += 1;
            }
            while (j <= right) {
                temp[t] = arr[j];
                j += 1;
                t += 1;
            }
    
            t=0;
            int tempLeft = left;
            while (tempLeft<=right){
                arr[tempLeft] = temp[t];
                t+=1;
                tempLeft+=1;
            }
        }
    

      

    7.基数排序

      将所有待比较数值统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列。 

     public static void radixSort(int[] arr) {
            //1. 得到数组中最大的数的位数
            int max = arr[0]; //假设第一数就是最大数
            for (int i = 1; i < arr.length; i++) {
                if (arr[i] > max) {
                    max = arr[i];
                }
            }
            //得到最大数是几位数
            int maxLength = (max + "").length();
            //定义一个二维数组,表示 10 个桶, 每个桶就是一个一维数组
            //说明
            //1. 二维数组包含 10 个一维数组
            //2. 为了防止在放入数的时候,数据溢出,则每个一维数组(桶),大小定为 arr.length //3. 名明确,基数排序是使用空间换时间的经典算法
            int[][] bucket = new int[10][arr.length];
            //为了记录每个桶中,实际存放了多少个数据,我们定义一个一维数组来记录各个桶的每次放入的数据个数 //可以这里理解
            //比如:bucketElementCounts[0] , 记录的就是 bucket[0] 桶的放入数据个数
            int[] bucketElementCounts = new int[10];
            //这里我们使用循环将代码处理
            for (int i = 0, n = 1; i < maxLength; i++, n *= 10) {
                //(针对每个元素的对应位进行排序处理), 第一次是个位,第二次是十位,第三次是百位..
                for (int j = 0; j < arr.length; j++) {
                    //取出每个元素的对应位的值
                    int digitOfElement = arr[j] / n % 10;
                    //放入到对应的桶中
                    bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
                    bucketElementCounts[digitOfElement]++;
                } //按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)
                int index = 0;
                //遍历每一桶,并将桶中是数据,放入到原数组
                for (int k = 0; k < bucketElementCounts.length; k++) {
                    //如果桶中,有数据,我们才放入到原数组
                    if (bucketElementCounts[k] != 0) {
                        //循环该桶即第 k 个桶(即第 k 个一维数组), 放入
                        for (int l = 0; l < bucketElementCounts[k]; l++) {
                            //取出元素放入到 arr
                            arr[index++] = bucket[k][l];
                        }
                    }
                    //第 i+1 轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!
                    bucketElementCounts[k] = 0;
                }
            }
        }

    常用算法比较:

    1. )  稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面;

    2. )  不稳定:如果a原本在b的前面,而a=b,排序之后a可能会出现在b的后面;

    3. )  内排序:所有排序操作都在内存中完成;

    4. )  外排序:由于数据太大,因此把数据放在磁盘中,而排序通过磁盘和内存的数据传输才能进行;

    5. )  时间复杂度:一个算法执行所耗费的时间。

    6. )  空间复杂度:运行完一个程序所需内存的大小。

    7. )  n: 数据规模

    8. )  k: “桶”的个数

    9. )  In-place: 不占用额外内存

      10. ) Out-place: 占用额外内存

  • 相关阅读:
    Laravel获取所有的数据库表及结构
    larave5.6 将Excel文件数据导入数据库代码实例
    艾伟_转载:Visual Studio调试之断点技巧篇 狼人:
    艾伟_转载:自用扩展方法分享 狼人:
    艾伟_转载:.NET Discovery 系列之三深入理解.NET垃圾收集机制(上) 狼人:
    艾伟_转载:.Net Discovery 系列之五Me JIT(上) 狼人:
    艾伟_转载:.NET Discovery 系列之六Me JIT(下) 狼人:
    艾伟_转载:.NET Discovery 系列之七深入理解.NET垃圾收集机制(拾贝篇) 狼人:
    艾伟_转载:Visual Studio调试之断点基础篇 狼人:
    艾伟_转载:.NET Discovery 系列之一string从入门到精通(上) 狼人:
  • 原文地址:https://www.cnblogs.com/chengzhihua/p/11686981.html
Copyright © 2020-2023  润新知