• LeetCode-Edit Distance


    编辑距离,很常见的题目,貌似去年google笔试就考了这道题,

    典型的DP,dp[i][j]表示word2[i]到word1[j]的最小编辑距离;

    当word2[i]与word1[j]不相同时有三种方式:

    1.改变字符,dp[i][j] = dp[i - 1][j- 1] + 1;

    2.插入字符,dp[i][j] = dp[i ][j - 1]  + 1;

    3.删除字符,dp[i][j] = dp[i - 1][j] + 1;

    故dp[i][j] = min(1,2,3);

    当word2[i]与word1[j]相同时:

    dp[i][j] = dp[i - 1][j - 1];

     1 class Solution {
     2 public:
     3     int minDistance(string word1, string word2) {
     4         // Start typing your C/C++ solution below
     5         // DO NOT write int main() function
     6         int m = word1.size(), n = word2.size();
     7         vector<vector<int> > dp(n + 1, vector<int>(m + 1));
     8         for (int i = 0; i <= n; ++i)
     9             dp[i][0] = i;
    10         for (int j = 0; j <= m; ++j)
    11             dp[0][j] = j;
    12         for (int i = 1; i <= n; ++i)
    13             for (int j = 1; j <= m; ++j) {
    14                 if (word2[i - 1] == word1[j - 1])
    15                     dp[i][j] = dp[i - 1][j - 1];
    16                 else 
    17                     dp[i][j] = min(dp[i - 1][j - 1], min(dp[i][j - 1], dp[i - 1][j])) + 1;
    18             }
    19         return dp[n][m];
    20     }
    21 };

    不过看到还有更好的方法,可以把空间复杂度降低到O(n),

    n = word2.length();

    dp[n + 1], dp[i]记录到word2[i]的最小编辑距离,

    动态更新的过程要巧妙一点,从word1的开始逐步更新,

    计算word1的(0, word1[i])到word2[j]的最小编辑距离,

    更新dp[j];

    递推过程:

    当更新word1的第i个字符时,dp[j]中存的是上一步的值,即word[i - 1]与word2[j]的距离;

    相当于前一种方法中的dp[i - 1][j],

    按0<= j <=n 遍历word2,

    dp[j]相当于dp[i - 1][j];

    dp[j - 1]相当于dp[i - 1][j - 1];

    在更新dp[j]为当前这一步(即遍历到word1[i])的值时,

    当字符相同时:

    当前的距离cur = dp[i - 1][j - 1] = dp[j - 1],

    由于要用到上一步的dp[j - 1],所以使用之后才能更新;

    当字符不同时:

    1.改变字符,cur = dp[i - 1][j- 1] + 1;

    2.插入字符,cur = dp[i ][j - 1]  + 1;

    3.删除字符,cur = dp[i - 1][j] + 1;

    1,3都要用到上一步的dp[j - 1], dp[j];

    2为当前这一步已经更新了的dp[j - 1],

    所以这里无法用dp[j - 1]表示两个值,故可以用一个变量pre记录当前上一次的值pre = dp[i][j - 1];

    当执行到j时,

    更新dp[j -1] = pre,然后令 pre = cur = dp[j];

     1 class Solution {
     2 public:
     3     int minDistance(string word1, string word2) {
     4         // Start typing your C/C++ solution below
     5         // DO NOT write int main() function
     6         if (word1.empty()) {
     7             return word2.size();
     8         }
     9         if (word2.empty()) {
    10             return word1.size();
    11         }
    12         int m = word1.size(), n = word2.size();
    13         int i = 0;
    14         vector<int> dp(n + 1, 0);
    15         for (int i = 0; i <= n; ++i)
    16             dp[i] = i;
    17         for (int i = 1; i <= m; ++i) {
    18             int pre = i;
    19             int cur = i;
    20             for (int j = 1; j <= n; ++j) {
    21                 if (word1[i - 1] == word2[j - 1])
    22                     cur = dp[j - 1];
    23                 else
    24                     cur = min(min(dp[j - 1], dp[j]), pre) + 1;            
    25                 dp[j - 1] = pre;
    26                 pre = cur;
    27             }
    28             dp[n] = cur;
    29         }
    30         return dp[n];
    31     }
    32 };
  • 相关阅读:
    第十一节 CSS引入的三种方式
    第十节 表单
    第九节 页面布局(简历)
    第八节 HTML表格
    第七节 列表标签
    第六节 链接标签
    第五节 插入图的img标签
    WordPress 全方位优化指南(下)
    Cloud Insight!StatsD 系监控产品新宠!
    WordPress 全方位优化指南(上)
  • 原文地址:https://www.cnblogs.com/chasuner/p/editdist.html
Copyright © 2020-2023  润新知