• 周总结 4.20-4.27


    彩色图片分类 

    一、前期工作
    1. 设置GPU
    如果使用的是CPU可以忽略这步

    import tensorflow as tf
    gpus = tf.config.list_physical_devices("GPU")

    if gpus:
    gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")

    2. 导入数据
    import tensorflow as tf
    from tensorflow.keras import datasets, layers, models
    import matplotlib.pyplot as plt

    (train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()

    3. 归一化
    # 将像素的值标准化至0到1的区间内。
    train_images, test_images = train_images / 255.0, test_images / 255.0

    train_images.shape,test_images.shape,train_labels.shape,test_labels.shape

    ((50000, 32, 32, 3), (10000, 32, 32, 3), (50000, 1), (10000, 1))

    4. 可视化
    class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer','dog', 'frog', 'horse', 'ship', 'truck']

    plt.figure(figsize=(20,10))
    for i in range(20):
    plt.subplot(5,10,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    plt.xlabel(class_names[train_labels[i][0]])
    plt.show()


    二、构建CNN网络
    model = models.Sequential([
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)), #卷积层1,卷积核3*3
    layers.MaxPooling2D((2, 2)), #池化层1,2*2采样
    layers.Conv2D(64, (3, 3), activation='relu'), #卷积层2,卷积核3*3
    layers.MaxPooling2D((2, 2)), #池化层2,2*2采样
    layers.Conv2D(64, (3, 3), activation='relu'), #卷积层3,卷积核3*3

    layers.Flatten(), #Flatten层,连接卷积层与全连接层
    layers.Dense(64, activation='relu'), #全连接层,特征进一步提取
    layers.Dense(10) #输出层,输出预期结果
    ])

    model.summary() # 打印网络结构

    Model: "sequential"
    _________________________________________________________________
    Layer (type) Output Shape Param #
    =================================================================
    conv2d (Conv2D) (None, 30, 30, 32) 896
    _________________________________________________________________
    max_pooling2d (MaxPooling2D) (None, 15, 15, 32) 0
    _________________________________________________________________
    conv2d_1 (Conv2D) (None, 13, 13, 64) 18496
    _________________________________________________________________
    max_pooling2d_1 (MaxPooling2 (None, 6, 6, 64) 0
    _________________________________________________________________
    conv2d_2 (Conv2D) (None, 4, 4, 64) 36928
    _________________________________________________________________
    flatten (Flatten) (None, 1024) 0
    _________________________________________________________________
    dense (Dense) (None, 64) 65600
    _________________________________________________________________
    dense_1 (Dense) (None, 10) 650
    =================================================================
    Total params: 122,570
    Trainable params: 122,570
    Non-trainable params: 0
    _________________________________________________________________

    三、编译
    model.compile(optimizer='adam',
    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    metrics=['accuracy'])

    四、训练模型
    history = model.fit(train_images, train_labels, epochs=10,
    validation_data=(test_images, test_labels))

    Epoch 1/10
    1563/1563 [==============================] - 9s 4ms/step - loss: 1.7862 - accuracy: 0.3390 - val_loss: 1.2697 - val_accuracy: 0.5406
    Epoch 2/10
    1563/1563 [==============================] - 5s 3ms/step - loss: 1.2270 - accuracy: 0.5595 - val_loss: 1.0731 - val_accuracy: 0.6167
    Epoch 3/10
    1563/1563 [==============================] - 5s 3ms/step - loss: 1.0355 - accuracy: 0.6337 - val_loss: 0.9678 - val_accuracy: 0.6610
    Epoch 4/10
    1563/1563 [==============================] - 5s 3ms/step - loss: 0.9221 - accuracy: 0.6727 - val_loss: 0.9589 - val_accuracy: 0.6648
    Epoch 5/10
    1563/1563 [==============================] - 5s 3ms/step - loss: 0.8474 - accuracy: 0.7022 - val_loss: 0.8962 - val_accuracy: 0.6853
    Epoch 6/10
    1563/1563 [==============================] - 5s 3ms/step - loss: 0.7814 - accuracy: 0.7292 - val_loss: 0.9124 - val_accuracy: 0.6873
    Epoch 7/10
    1563/1563 [==============================] - 5s 3ms/step - loss: 0.7398 - accuracy: 0.7398 - val_loss: 0.8924 - val_accuracy: 0.6929
    Epoch 8/10
    1563/1563 [==============================] - 5s 3ms/step - loss: 0.7008 - accuracy: 0.7542 - val_loss: 0.9809 - val_accuracy: 0.6854
    Epoch 9/10
    1563/1563 [==============================] - 5s 3ms/step - loss: 0.6474 - accuracy: 0.7732 - val_loss: 0.8549 - val_accuracy: 0.7137
    Epoch 10/10
    1563/1563 [==============================] - 5s 3ms/step - loss: 0.6041 - accuracy: 0.7889 - val_loss: 0.8909 - val_accuracy: 0.7046

    五、预测
    通过模型进行预测得到的是每一个类别的概率,数字越大该图片为该类别的可能性越大

    plt.imshow(test_images[1])


    import numpy as np

    pre = model.predict(test_images)
    print(class_names[np.argmax(pre[1])])

    ship

    六、模型评估
    import matplotlib.pyplot as plt

    plt.plot(history.history['accuracy'], label='accuracy')
    plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
    plt.xlabel('Epoch')
    plt.ylabel('Accuracy')
    plt.ylim([0.5, 1])
    plt.legend(loc='lower right')
    plt.show()

    test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)

    313/313 - 0s - loss: 0.8909 - accuracy: 0.7046

    print(test_acc)

    0.7045999765396118

  • 相关阅读:
    github.com/dotnet/orleans
    C#开源
    Windows Server 2016正式版14393英文版ISO镜像下载:_X64FRE_ZH-CN.ISO
    Windows Server 2016
    功能更新到 Windows 10 企业版, 版本 1607
    Load Audio or Vedio files
    Socket.Available 属性
    CaptureManagerSDK
    Net.Sockets
    Solid Edge如何制作装配体的剖视图
  • 原文地址:https://www.cnblogs.com/charles-s/p/14941524.html
Copyright © 2020-2023  润新知