LinkedList简介####
继承于AbstractSequentialList的双向链表,可以被当做堆栈、队列或双端队列进行操作。
LinkedList本质上是一个双向链表,实现了Dequeue接口。
LinkedList包含两个重要的成员:header和size。
header是双向链表的表头,它是双向链表节点所对应的类Node的实例。Node中包含成员变量:prev、next、item。其中prev是该节点的上一个节点,next是该节点的下一个节点,item是该节点所包含的值。
private static class Node<E> {
E item;
Node<E> next;
Node<E> prev;
Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}
size是双向链表中节点的个数。
LinkedList构造函数####
//默认构造函数
LinkedList() ;
//创建一个LinkedList,包含Collection中的全部元素
LinkedList(Collection<? extends E> c);
源码分析####
package java.util;
import java.util.function.Consumer;
public class LinkedList<E>
extends AbstractSequentialList<E>
implements List<E>, Deque<E>, Cloneable, java.io.Serializable
{
//集合的大小
transient int size = 0;
//表头
transient Node<E> first;
//表尾
transient Node<E> last;
//构造函数
public LinkedList() {
}
public LinkedList(Collection<? extends E> c) {
this();
addAll(c);
}
private void linkFirst(E e) {
final Node<E> f = first;
//创建新的节点,新节点的后继指向原来的头节点,即将原头节点向后移一位,新节点代替头结点的位置。
final Node<E> newNode = new Node<>(null, e, f);
//表头设定为新节点
first = newNode;
//如果往后移位的节点为空,则新表头节点就是最后一个节点
//否则移位节点的上一节点是新节点
if (f == null)
last = newNode;
else
f.prev = newNode;
//容量和代码改变计数增加
size++;
modCount++;
}
//在链表结尾添加元素,类似linkFirst(E e)
void linkLast(E e) {
final Node<E> l = last;
final Node<E> newNode = new Node<>(l, e, null);
last = newNode;
if (l == null)
first = newNode;
else
l.next = newNode;
size++;
modCount++;
}
//在非空节点succ之前插入节点e
//即插入节点,要处理三个节点的信息,主要是next和prev的值的改变
void linkBefore(E e, Node<E> succ) {
//succ的上一个节点
final Node<E> pred = succ.prev;
//创建一个节点,将新节点的上一个节点设定为succ的上一节点,将新节点的下一节点设定为succ
final Node<E> newNode = new Node<>(pred, e, succ);
//设定succ的上一节点是新建的节点
succ.prev = newNode;
//如果新建节点的上一节点为null,则新建节点为表头节点
if (pred == null)
first = newNode;
else
//设定上一节点的下一节点是新建的节点
pred.next = newNode;
size++;
modCount++;
}
//释放非空的首节点
private E unlinkFirst(Node<E> f) {
// assert f == first && f != null;
final E element = f.item;
final Node<E> next = f.next;
f.item = null;
f.next = null; // help GC
first = next;
if (next == null)
last = null;
else
next.prev = null;
size--;
modCount++;
return element;
}
//释放非空的尾节点
private E unlinkLast(Node<E> l) {
// assert l == last && l != null;
final E element = l.item;
final Node<E> prev = l.prev;
l.item = null;
l.prev = null; // help GC
last = prev;
if (prev == null)
first = null;
else
prev.next = null;
size--;
modCount++;
return element;
}
//释放非空节点x
E unlink(Node<E> x) {
// assert x != null;
final E element = x.item;
final Node<E> next = x.next;
final Node<E> prev = x.prev;
if (prev == null) {
first = next;
} else {
prev.next = next;
x.prev = null;
}
if (next == null) {
last = prev;
} else {
next.prev = prev;
x.next = null;
}
x.item = null;
size--;
modCount++;
return element;
}
//获取首节点的元素
public E getFirst() {
final Node<E> f = first;
if (f == null)
throw new NoSuchElementException();
return f.item;
}
//获取尾节点的元素
public E getLast() {
final Node<E> l = last;
if (l == null)
throw new NoSuchElementException();
return l.item;
}
//删除首节点
public E removeFirst() {
final Node<E> f = first;
if (f == null)
throw new NoSuchElementException();
return unlinkFirst(f);
}
//删除尾节点
public E removeLast() {
final Node<E> l = last;
if (l == null)
throw new NoSuchElementException();
return unlinkLast(l);
}
//添加元素到首节点
public void addFirst(E e) {
linkFirst(e);
}
//添加元素到尾节点
public void addLast(E e) {
linkLast(e);
}
//判断是否包含指定元素
public boolean contains(Object o) {
return indexOf(o) >= 0;
}
//集合大小
public int size() {
return size;
}
//添加元素,默认是添加到尾节点
public boolean add(E e) {
linkLast(e);
return true;
}
//删除指定元素节点
public boolean remove(Object o) {
if (o == null) {
for (Node<E> x = first; x != null; x = x.next) {
if (x.item == null) {
unlink(x);
return true;
}
}
} else {
//遍历并判断,再调用unlink()方法删除指定元素
for (Node<E> x = first; x != null; x = x.next) {
if (o.equals(x.item)) {
unlink(x);
return true;
}
}
}
return false;
}
//添加Collection到集合中
public boolean addAll(Collection<? extends E> c) {
//这里是从链表尾节点开始插入的
return addAll(size, c);
}
//从指定位置插入集合
public boolean addAll(int index, Collection<? extends E> c) {
checkPositionIndex(index);
//将要插入的集合转换成数组
Object[] a = c.toArray();
int numNew = a.length;
if (numNew == 0)
return false;
Node<E> pred, succ;
if (index == size) {
succ = null;
pred = last;
} else {
succ = node(index);
pred = succ.prev;
}
//遍历并将数组中的元素添加到链表中
//注意:所有增加删除链表节点的操作都必须要对上一节点、本节点、下一节点进行修改
for (Object o : a) {
@SuppressWarnings("unchecked") E e = (E) o;
Node<E> newNode = new Node<>(pred, e, null);
if (pred == null)
first = newNode;
else
pred.next = newNode;
pred = newNode;
}
if (succ == null) {
last = pred;
} else {
pred.next = succ;
succ.prev = pred;
}
size += numNew;
modCount++;
return true;
}
//循环遍历并设定为null
public void clear() {
for (Node<E> x = first; x != null; ) {
Node<E> next = x.next;
x.item = null;
x.next = null;
x.prev = null;
x = next;
}
first = last = null;
size = 0;
modCount++;
}
//获取指定位置节点的元素
public E get(int index) {
checkElementIndex(index);
return node(index).item;
}
//设定指定节点的元素
public E set(int index, E element) {
checkElementIndex(index);
Node<E> x = node(index);
E oldVal = x.item;
x.item = element;
return oldVal;
}
//添加元素到指定节点
public void add(int index, E element) {
checkPositionIndex(index);
if (index == size)
linkLast(element);
else
linkBefore(element, node(index));
}
//删除指定节点
public E remove(int index) {
checkElementIndex(index);
return unlink(node(index));
}
////判断指定索引位置的元素是否存在
private boolean isElementIndex(int index) {
return index >= 0 && index < size;
}
//
private boolean isPositionIndex(int index) {
return index >= 0 && index <= size;
}
private String outOfBoundsMsg(int index) {
return "Index: "+index+", Size: "+size;
}
private void checkElementIndex(int index) {
if (!isElementIndex(index))
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
private void checkPositionIndex(int index) {
if (!isPositionIndex(index))
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
////返回指定索引位置的节点
Node<E> node(int index) {
//如果索引小于集合大小的一般,从表头节点开始查找
if (index < (size >> 1)) {
Node<E> x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {
//否则从表尾节点开始查找
Node<E> x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}
//返回指定元素首次出现的节点位置
public int indexOf(Object o) {
int index = 0;
if (o == null) {
for (Node<E> x = first; x != null; x = x.next) {
if (x.item == null)
return index;
index++;
}
} else {
for (Node<E> x = first; x != null; x = x.next) {
if (o.equals(x.item))
return index;
index++;
}
}
return -1;
}
//返回指定元素最后一次出现的节点位置
public int lastIndexOf(Object o) {
int index = size;
if (o == null) {
for (Node<E> x = last; x != null; x = x.prev) {
index--;
if (x.item == null)
return index;
}
} else {
for (Node<E> x = last; x != null; x = x.prev) {
index--;
if (o.equals(x.item))
return index;
}
}
return -1;
}
//获取但不移除此列表的头(第一个元素)。
public E peek() {
final Node<E> f = first;
return (f == null) ? null : f.item;
}
//获取但不移除此列表的头(第一个元素)。
public E element() {
return getFirst();
}
// 获取并移除此列表的头(第一个元素)
public E poll() {
final Node<E> f = first;
return (f == null) ? null : unlinkFirst(f);
}
//删除首节点
public E remove() {
return removeFirst();
}
//将指定元素添加到此列表的末尾(最后一个元素)
//调用的是add()函数
public boolean offer(E e) {
return add(e);
}
//将指定元素添加到此列表的表头
public boolean offerFirst(E e) {
addFirst(e);
return true;
}
//将指定元素添加到此列表的末尾
public boolean offerLast(E e) {
addLast(e);
return true;
}
//获取但不移除此列表的头(第一个元素)。
//和peek()函数代码一致
public E peekFirst() {
final Node<E> f = first;
return (f == null) ? null : f.item;
}
//获取但不移除此列表的末尾
public E peekLast() {
final Node<E> l = last;
return (l == null) ? null : l.item;
}
//获取并移除此列表的表头
//和poll()函数代码一致
public E pollFirst() {
final Node<E> f = first;
return (f == null) ? null : unlinkFirst(f);
}
//获取并移除此列表的末尾
public E pollLast() {
final Node<E> l = last;
return (l == null) ? null : unlinkLast(l);
}
//添加元素到列表表头
public void push(E e) {
addFirst(e);
}
//删除并返回列表表头
public E pop() {
return removeFirst();
}
//删除指定元素第一次出现的节点
public boolean removeFirstOccurrence(Object o) {
return remove(o);
}
//返回指定元素最后一次出现的节点,这里是从列表末尾开始遍历的
public boolean removeLastOccurrence(Object o) {
if (o == null) {
for (Node<E> x = last; x != null; x = x.prev) {
if (x.item == null) {
unlink(x);
return true;
}
}
} else {
for (Node<E> x = last; x != null; x = x.prev) {
if (o.equals(x.item)) {
unlink(x);
return true;
}
}
}
return false;
}
//遍历
public ListIterator<E> listIterator(int index) {
checkPositionIndex(index);
return new ListItr(index);
}
private class ListItr implements ListIterator<E> {
private Node<E> lastReturned;
private Node<E> next;
private int nextIndex;
private int expectedModCount = modCount;
ListItr(int index) {
// assert isPositionIndex(index);
next = (index == size) ? null : node(index);
nextIndex = index;
}
public boolean hasNext() {
return nextIndex < size;
}
public E next() {
checkForComodification();
if (!hasNext())
throw new NoSuchElementException();
lastReturned = next;
next = next.next;
nextIndex++;
return lastReturned.item;
}
public boolean hasPrevious() {
return nextIndex > 0;
}
public E previous() {
checkForComodification();
if (!hasPrevious())
throw new NoSuchElementException();
lastReturned = next = (next == null) ? last : next.prev;
nextIndex--;
return lastReturned.item;
}
public int nextIndex() {
return nextIndex;
}
public int previousIndex() {
return nextIndex - 1;
}
public void remove() {
checkForComodification();
if (lastReturned == null)
throw new IllegalStateException();
Node<E> lastNext = lastReturned.next;
unlink(lastReturned);
if (next == lastReturned)
next = lastNext;
else
nextIndex--;
lastReturned = null;
expectedModCount++;
}
public void set(E e) {
if (lastReturned == null)
throw new IllegalStateException();
checkForComodification();
lastReturned.item = e;
}
public void add(E e) {
checkForComodification();
lastReturned = null;
if (next == null)
linkLast(e);
else
linkBefore(e, next);
nextIndex++;
expectedModCount++;
}
public void forEachRemaining(Consumer<? super E> action) {
Objects.requireNonNull(action);
while (modCount == expectedModCount && nextIndex < size) {
action.accept(next.item);
lastReturned = next;
next = next.next;
nextIndex++;
}
checkForComodification();
}
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
//链表的数据结构
private static class Node<E> {
E item;
Node<E> next;
Node<E> prev;
Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}
/**
* @since 1.6
*/
public Iterator<E> descendingIterator() {
return new DescendingIterator();
}
/**
* Adapter to provide descending iterators via ListItr.previous
*/
private class DescendingIterator implements Iterator<E> {
private final ListItr itr = new ListItr(size());
public boolean hasNext() {
return itr.hasPrevious();
}
public E next() {
return itr.previous();
}
public void remove() {
itr.remove();
}
}
@SuppressWarnings("unchecked")
private LinkedList<E> superClone() {
try {
return (LinkedList<E>) super.clone();
} catch (CloneNotSupportedException e) {
throw new InternalError(e);
}
}
//克隆
public Object clone() {
LinkedList<E> clone = superClone();
// Put clone into "virgin" state
clone.first = clone.last = null;
clone.size = 0;
clone.modCount = 0;
// Initialize clone with our elements
for (Node<E> x = first; x != null; x = x.next)
clone.add(x.item);
return clone;
}
//转换为数组
public Object[] toArray() {
Object[] result = new Object[size];
int i = 0;
for (Node<E> x = first; x != null; x = x.next)
result[i++] = x.item;
return result;
}
@SuppressWarnings("unchecked")
public <T> T[] toArray(T[] a) {
if (a.length < size)
a = (T[])java.lang.reflect.Array.newInstance(
a.getClass().getComponentType(), size);
int i = 0;
Object[] result = a;
for (Node<E> x = first; x != null; x = x.next)
result[i++] = x.item;
if (a.length > size)
a[size] = null;
return a;
}
//序列化
private static final long serialVersionUID = 876323262645176354L;
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
// Write out any hidden serialization magic
s.defaultWriteObject();
// Write out size
s.writeInt(size);
// Write out all elements in the proper order.
for (Node<E> x = first; x != null; x = x.next)
s.writeObject(x.item);
}
/**
* Reconstitutes this {@code LinkedList} instance from a stream
* (that is, deserializes it).
*/
@SuppressWarnings("unchecked")
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// Read in any hidden serialization magic
s.defaultReadObject();
// Read in size
int size = s.readInt();
// Read in all elements in the proper order.
for (int i = 0; i < size; i++)
linkLast((E)s.readObject());
}
@Override
public Spliterator<E> spliterator() {
return new LLSpliterator<>(this, -1, 0);
}
/** A customized variant of Spliterators.IteratorSpliterator */
static final class LLSpliterator<E> implements Spliterator<E> {
static final int BATCH_UNIT = 1 << 10; // batch array size increment
static final int MAX_BATCH = 1 << 25; // max batch array size;
final LinkedList<E> list; // null OK unless traversed
Node<E> current; // current node; null until initialized
int est; // size estimate; -1 until first needed
int expectedModCount; // initialized when est set
int batch; // batch size for splits
LLSpliterator(LinkedList<E> list, int est, int expectedModCount) {
this.list = list;
this.est = est;
this.expectedModCount = expectedModCount;
}
final int getEst() {
int s; // force initialization
final LinkedList<E> lst;
if ((s = est) < 0) {
if ((lst = list) == null)
s = est = 0;
else {
expectedModCount = lst.modCount;
current = lst.first;
s = est = lst.size;
}
}
return s;
}
public long estimateSize() { return (long) getEst(); }
public Spliterator<E> trySplit() {
Node<E> p;
int s = getEst();
if (s > 1 && (p = current) != null) {
int n = batch + BATCH_UNIT;
if (n > s)
n = s;
if (n > MAX_BATCH)
n = MAX_BATCH;
Object[] a = new Object[n];
int j = 0;
do { a[j++] = p.item; } while ((p = p.next) != null && j < n);
current = p;
batch = j;
est = s - j;
return Spliterators.spliterator(a, 0, j, Spliterator.ORDERED);
}
return null;
}
public void forEachRemaining(Consumer<? super E> action) {
Node<E> p; int n;
if (action == null) throw new NullPointerException();
if ((n = getEst()) > 0 && (p = current) != null) {
current = null;
est = 0;
do {
E e = p.item;
p = p.next;
action.accept(e);
} while (p != null && --n > 0);
}
if (list.modCount != expectedModCount)
throw new ConcurrentModificationException();
}
public boolean tryAdvance(Consumer<? super E> action) {
Node<E> p;
if (action == null) throw new NullPointerException();
if (getEst() > 0 && (p = current) != null) {
--est;
E e = p.item;
current = p.next;
action.accept(e);
if (list.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}
return false;
}
public int characteristics() {
return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
}
}
}
遍历方式####
1、迭代器Iterator
2、快速随机访问get()方法
3、增强for循环
4、pollFirst()
5、pollLast()
6、removeFirst()
7、removeLast()
注:removeFirst()和removeLast()方法最快,因为一边读一边删。如果单纯读取。不删除原始数据,使用增强for循环。无论如何,不要使用随机访问,链表随机访问极其慢