• 用Keras搭建神经网络 简单模版(六)——Autoencoder 自编码


    import numpy as np
    np.random.seed(1337)
    
    from keras.datasets import mnist
    from keras.models import Model
    from keras.layers import Dense, Input
    import matplotlib.pyplot as plt
    
    
    (x_train,y_train),(x_test,y_test) = mnist.load_data()
    
    x_train = x_train.astype('float32') / 255.-0.5 #(-0.5,0.5)的区间
    x_test = x_test.astype('float32') / 255.-0.5
    x_train = x_train.reshape((x_train.shape[0],-1))
    x_test = x_test.reshape((x_test.shape[0],-1))
    print(x_train.shape)
    print(x_test.shape)
    
    # 最终压缩成2个
    encoding_dim = 2
    
    # 输入
    input_img = Input(shape=(784,))
    
    # encoder layers
    encoded = Dense(128, activation='relu')(input_img)
    encoded = Dense(64, activation='relu')(encoded)
    encoded = Dense(10, activation='relu')(encoded)
    encoder_output = Dense(encoding_dim,)(encoded)
    
    # decoder layers
    decoded = Dense(10,activation='relu')(encoder_output)
    decoded = Dense(64,activation='relu')(decoded)
    decoded = Dense(128,activation='relu')(decoded)
    decoded = Dense(784,activation='tanh')(decoded)
    
    # 搭建autoencoder模型
    autoencoder = Model(input=input_img,output=decoded)
    
    #  搭建encoder model for plotting,encoder是autoencoder的一部分
    encoder = Model(input=input_img,output=encoder_output)
    
    # 编译 autoencoder
    autoencoder.compile(optimizer='adam',loss='mse')
    
    # 训练
    autoencoder.fit(x_train, x_train,
                    nb_epoch=20,
                    batch_size=256,
                    shuffle=True)
    
    # plotting
    encoded_imgs = encoder.predict(x_test)
    plt.scatter(encoded_imgs[:,0], encoded_imgs[:,1], c=y_test)
    plt.show()
    E:ProgramDataAnaconda3libsite-packagesh5py__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
      from ._conv import register_converters as _register_converters
    Using TensorFlow backend.
    (60000, 784)
    (10000, 784)
    D:/我的python/用keras搭建神经网络/Autoencoder 自编码.py:38: UserWarning: Update your `Model` call to the Keras 2 API: `Model(inputs=Tensor("in..., outputs=Tensor("de...)`
      autoencoder = Model(input=input_img,output=decoded)
    D:/我的python/用keras搭建神经网络/Autoencoder 自编码.py:41: UserWarning: Update your `Model` call to the Keras 2 API: `Model(inputs=Tensor("in..., outputs=Tensor("de...)`
      encoder = Model(input=input_img,output=encoder_output)
    D:/我的python/用keras搭建神经网络/Autoencoder 自编码.py:50: UserWarning: The `nb_epoch` argument in `fit` has been renamed `epochs`.
      shuffle=True)
    Epoch 1/20
    60000/60000 [==============================] - 5s 80us/step - loss: 0.0694
    Epoch 2/20
    60000/60000 [==============================] - 1s 20us/step - loss: 0.0562
    Epoch 3/20
    60000/60000 [==============================] - 1s 19us/step - loss: 0.0525
    Epoch 4/20
    60000/60000 [==============================] - 1s 20us/step - loss: 0.0493
    Epoch 5/20
    60000/60000 [==============================] - 1s 20us/step - loss: 0.0476
    Epoch 6/20
    60000/60000 [==============================] - 1s 20us/step - loss: 0.0463
    Epoch 7/20
    60000/60000 [==============================] - 1s 22us/step - loss: 0.0452
    Epoch 8/20
    60000/60000 [==============================] - 1s 23us/step - loss: 0.0442
    Epoch 9/20
    60000/60000 [==============================] - 1s 19us/step - loss: 0.0435
    Epoch 10/20
    60000/60000 [==============================] - 1s 19us/step - loss: 0.0429
    Epoch 11/20
    60000/60000 [==============================] - 1s 18us/step - loss: 0.0424
    Epoch 12/20
    60000/60000 [==============================] - 1s 18us/step - loss: 0.0419
    Epoch 13/20
    60000/60000 [==============================] - 1s 18us/step - loss: 0.0415
    Epoch 14/20
    60000/60000 [==============================] - 1s 18us/step - loss: 0.0412
    Epoch 15/20
    60000/60000 [==============================] - 1s 18us/step - loss: 0.0409
    Epoch 16/20
    60000/60000 [==============================] - 1s 18us/step - loss: 0.0405
    Epoch 17/20
    60000/60000 [==============================] - 1s 18us/step - loss: 0.0402
    Epoch 18/20
    60000/60000 [==============================] - 1s 19us/step - loss: 0.0401
    Epoch 19/20
    60000/60000 [==============================] - 1s 18us/step - loss: 0.0398
    Epoch 20/20
    60000/60000 [==============================] - 1s 18us/step - loss: 0.0397

  • 相关阅读:
    关于Oracle数据库字符集
    NK3C:关于svg文件使用
    NK3C:异常处理(前端)
    关于返回值问题
    NK3C开发要点
    velocity模板使用建议
    样本随机抽样、局号抽样逻辑
    样本回收逻辑
    NKUI框架使用
    解决chrome,下载在文件夹中显示,调用错误的关联程序
  • 原文地址:https://www.cnblogs.com/caiyishuai/p/11337126.html
Copyright © 2020-2023  润新知