• 洛谷P3803 【模板】多项式乘法(FFT)


    传送门

    FFT我啥都不会,先坑着

     1 //minamoto
     2 #include<iostream>
     3 #include<cstdio>
     4 #include<cmath>
     5 using namespace std;
     6 #define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
     7 char buf[1<<21],*p1=buf,*p2=buf;
     8 inline int read(){
     9     #define num ch-'0'
    10     char ch;bool flag=0;int res;
    11     while(!isdigit(ch=getc()))
    12     (ch=='-')&&(flag=true);
    13     for(res=num;isdigit(ch=getc());res=res*10+num);
    14     (flag)&&(res=-res);
    15     #undef num
    16     return res;
    17 }
    18 char sr[1<<21],z[20];int C=-1,Z;
    19 inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
    20 inline void print(int x){
    21     if(C>1<<20)Ot();if(x<0)sr[++C]=45,x=-x;
    22     while(z[++Z]=x%10+48,x/=10);
    23     while(sr[++C]=z[Z],--Z);sr[++C]=' ';
    24 }
    25 const int N=1e7+5;const double Pi=acos(-1.0);
    26 struct complex{
    27     double x,y;
    28     complex(double xx=0,double yy=0){x=xx,y=yy;}
    29     inline complex operator +(complex b){return complex(x+b.x,y+b.y);}
    30     inline complex operator -(complex b){return complex(x-b.x,y-b.y);}
    31     inline complex operator *(complex b){return complex(x*b.x-y*b.y,x*b.y+y*b.x);}
    32 }a[N],b[N];
    33 int n,m,l,r[N],limit=1;
    34 void FFT(complex *A,int type){
    35     for(int i=0;i<limit;++i)
    36     if(i<r[i]) swap(A[i],A[r[i]]);
    37     for(int mid=1;mid<limit;mid<<=1){
    38         complex Wn(cos(Pi/mid),type*sin(Pi/mid));
    39         for(int R=mid<<1,j=0;j<limit;j+=R){
    40             complex w(1,0);
    41             for(int k=0;k<mid;++k,w=w*Wn){
    42                 complex x=A[j+k],y=w*A[j+mid+k];
    43                 A[j+k]=x+y,A[j+mid+k]=x-y;
    44             }
    45         }
    46     }
    47 }
    48 int main(){
    49 //    freopen("testdata.in","r",stdin);
    50     n=read(),m=read();
    51     for(int i=0;i<=n;++i) a[i].x=read();
    52     for(int i=0;i<=m;++i) b[i].x=read();
    53     while(limit<=n+m) limit<<=1,++l;
    54     for(int i=0;i<limit;++i)
    55     r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
    56     FFT(a,1),FFT(b,1);
    57     for(int i=0;i<=limit;++i) a[i]=a[i]*b[i];
    58     FFT(a,-1);
    59     for(int i=0;i<=n+m;++i)
    60     print((int)(a[i].x/limit+0.5));
    61     Ot();
    62     return 0;
    63 }
  • 相关阅读:
    vue 基础
    Bootstrap 基础
    FormatMessage函数
    CreateProcess中的部分参数理解
    关于远程线程的调用
    利用服务枚举进程
    FindQQByProcess
    寻找kernel32.dll的地址
    ShellCode的几种调用方法
    操作系统版本
  • 原文地址:https://www.cnblogs.com/bztMinamoto/p/9742341.html
Copyright © 2020-2023  润新知