• Deep Learning 学习随记(六)Linear Decoder 线性解码


    线性解码器(Linear Decoder)

    前面第一章提到稀疏自编码器(http://www.cnblogs.com/bzjia-blog/p/SparseAutoencoder.html)的三层网络结构,我们要满足最后一层的输出:a(3)≈a(1)(即输入值x)的近似重建。考虑到在最后一层的a(3)=f(z(3)),这里f一般用sigmoid函数或tanh函数等非线性函数,而将输出界定在一个范围内(比如sigmoid函数使结果在[0,1]中)。这对于有些数据组,例如MNIST手写数字库中其输入输出范围符合极佳,但并不是所有的情况都满足这个条件。例如,若采用PCA白化,输入将不再限制于[0,1],虽可通过缩放数据来确保其符合特定范围内,但显然,这不是最好的方式。

    因此,这里提到的Linear Decoder就是通过在最后一层用激励函数:a(3) = z(3)(也即f(z)=z)来实现。这里要注意到,只是在最后一层用这个激励函数,其他隐层的激励函数仍然是sigmoid函数或者tanh函数,我们仅在输出层中使用线性激励机制。

    这样一来,在求梯度的时候,公式:

    就应该改成:

    这个是显然的,因为f'(z)=1。其他层的都不需要改变。

    练习:

    这里讲义给出了一个练习,基本跟稀疏自编码一样,只有几处需要稍微改动一下。

    linearDecoderExercise.m

    %% CS294A/CS294W Linear Decoder Exercise
    
    %  Instructions
    %  ------------
    % 
    %  This file contains code that helps you get started on the
    %  linear decoder exericse. For this exercise, you will only need to modify
    %  the code in sparseAutoencoderLinearCost.m. You will not need to modify
    %  any code in this file.
    
    %%======================================================================
    %% STEP 0: Initialization
    %  Here we initialize some parameters used for the exercise.
    
    imageChannels = 3;     % number of channels (rgb, so 3)
    
    patchDim   = 8;          % patch dimension
    numPatches = 100000;   % number of patches
    
    visibleSize = patchDim * patchDim * imageChannels;  % number of input units 
    outputSize  = visibleSize;   % number of output units
    hiddenSize  = 400;           % number of hidden units 
    
    sparsityParam = 0.035; % desired average activation of the hidden units.
    lambda = 3e-3;         % weight decay parameter       
    beta = 5;              % weight of sparsity penalty term       
    
    epsilon = 0.1;           % epsilon for ZCA whitening
    
    %%======================================================================
    %% STEP 1: Create and modify sparseAutoencoderLinearCost.m to use a linear decoder,
    %          and check gradients
    %  You should copy sparseAutoencoderCost.m from your earlier exercise 
    %  and rename it to sparseAutoencoderLinearCost.m. 
    %  Then you need to rename the function from sparseAutoencoderCost to
    %  sparseAutoencoderLinearCost, and modify it so that the sparse autoencoder
    %  uses a linear decoder instead. Once that is done, you should check 
    % your gradients to verify that they are correct.
    
    % NOTE: Modify sparseAutoencoderCost first!
    
    % To speed up gradient checking, we will use a reduced network and some
    % dummy patches
    
    debugHiddenSize = 5;
    debugvisibleSize = 8;
    patches = rand([8 10]);
    theta = initializeParameters(debugHiddenSize, debugvisibleSize); 
    
    [cost, grad] = sparseAutoencoderLinearCost(theta, debugvisibleSize, debugHiddenSize, ...
                                               lambda, sparsityParam, beta, ...
                                               patches);
    
    % Check gradients
    numGrad = computeNumericalGradient( @(x) sparseAutoencoderLinearCost(x, debugvisibleSize, debugHiddenSize, ...
                                                      lambda, sparsityParam, beta, ...
                                                      patches), theta);
    
    % Use this to visually compare the gradients side by side
    disp([numGrad grad]); 
    
    diff = norm(numGrad-grad)/norm(numGrad+grad);
    % Should be small. In our implementation, these values are usually less than 1e-9.
    disp(diff); 
    
    assert(diff < 1e-9, 'Difference too large. Check your gradient computation again');
    
    % NOTE: Once your gradients check out, you should run step 0 again to
    %       reinitialize the parameters
    %}
    
    %%======================================================================
    %% STEP 2: Learn features on small patches
    %  In this step, you will use your sparse autoencoder (which now uses a 
    %  linear decoder) to learn features on small patches sampled from related
    %  images.
    
    %% STEP 2a: Load patches
    %  In this step, we load 100k patches sampled from the STL10 dataset and
    %  visualize them. Note that these patches have been scaled to [0,1]
    
    load stlSampledPatches.mat
    
    displayColorNetwork(patches(:, 1:100));
    
    %% STEP 2b: Apply preprocessing
    %  In this sub-step, we preprocess the sampled patches, in particular, 
    %  ZCA whitening them. 
    % 
    %  In a later exercise on convolution and pooling, you will need to replicate 
    %  exactly the preprocessing steps you apply to these patches before 
    %  using the autoencoder to learn features on them. Hence, we will save the
    %  ZCA whitening and mean image matrices together with the learned features
    %  later on.
    
    % Subtract mean patch (hence zeroing the mean of the patches)
    meanPatch = mean(patches, 2);  
    patches = bsxfun(@minus, patches, meanPatch);
    
    % Apply ZCA whitening
    sigma = patches * patches' / numPatches;
    [u, s, v] = svd(sigma);
    ZCAWhite = u * diag(1 ./ sqrt(diag(s) + epsilon)) * u';
    patches = ZCAWhite * patches;
    
    displayColorNetwork(patches(:, 1:100));
    
    %% STEP 2c: Learn features
    %  You will now use your sparse autoencoder (with linear decoder) to learn
    %  features on the preprocessed patches. This should take around 45 minutes.
    
    theta = initializeParameters(hiddenSize, visibleSize);
    
    % Use minFunc to minimize the function
    addpath minFunc/
    
    options = struct;
    options.Method = 'lbfgs'; 
    options.maxIter = 400;
    options.display = 'on';
    
    [optTheta, cost] = minFunc( @(p) sparseAutoencoderLinearCost(p, ...
                                       visibleSize, hiddenSize, ...
                                       lambda, sparsityParam, ...
                                       beta, patches), ...
                                  theta, options);
    
    % Save the learned features and the preprocessing matrices for use in 
    % the later exercise on convolution and pooling
    fprintf('Saving learned features and preprocessing matrices...
    ');                          
    save('STL10Features.mat', 'optTheta', 'ZCAWhite', 'meanPatch');
    fprintf('Saved
    ');
    
    %% STEP 2d: Visualize learned features
    
    W = reshape(optTheta(1:visibleSize * hiddenSize), hiddenSize, visibleSize);
    b = optTheta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize);
    displayColorNetwork( (W*ZCAWhite)');

     sparseAutoencoderLinearCost.m

    function [cost,grad,features] = sparseAutoencoderLinearCost(theta, visibleSize, hiddenSize, ...
                                                                lambda, sparsityParam, beta, data)
    % -------------------- YOUR CODE HERE --------------------
    % Instructions:
    %   Copy sparseAutoencoderCost in sparseAutoencoderCost.m from your
    %   earlier exercise onto this file, renaming the function to
    %   sparseAutoencoderLinearCost, and changing the autoencoder to use a
    %   linear decoder.
                                       
    % visibleSize: the number of input units (probably 64) 
    % hiddenSize: the number of hidden units (probably 25) 
    % lambda: weight decay parameter
    % sparsityParam: The desired average activation for the hidden units (denoted in the lecture
    %                           notes by the greek alphabet rho, which looks like a lower-case "p").
    % beta: weight of sparsity penalty term
    % data: Our 64x10000 matrix containing the training data.  So, data(:,i) is the i-th training example. 
      
    % The input theta is a vector (because minFunc expects the parameters to be a vector). 
    % We first convert theta to the (W1, W2, b1, b2) matrix/vector format, so that this 
    % follows the notation convention of the lecture notes. 
    
    %将长向量转换成每一层的权值矩阵和偏置向量值
    W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);
    W2 = reshape(theta(hiddenSize*visibleSize+1:2*hiddenSize*visibleSize), visibleSize, hiddenSize);
    b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize);
    b2 = theta(2*hiddenSize*visibleSize+hiddenSize+1:end);
    
    % Cost and gradient variables (your code needs to compute these values). 
    % Here, we initialize them to zeros. 
    cost = 0;
    W1grad = zeros(size(W1)); 
    W2grad = zeros(size(W2));
    b1grad = zeros(size(b1)); 
    b2grad = zeros(size(b2));
    
    %% ---------- YOUR CODE HERE --------------------------------------
    
    
    Jcost = 0;%直接误差
    Jweight = 0;%权值惩罚
    Jsparse = 0;%稀疏性惩罚
    [n m] = size(data);%m为样本的个数,n为样本的特征数
    
    %前向算法计算各神经网络节点的线性组合值和active值
    z2 = W1*data+repmat(b1,1,m);%注意这里一定要将b1向量复制扩展成m列的矩阵
    a2 = sigmoid(z2);
    z3 = W2*a2+repmat(b2,1,m);
    a3 = z3;                                             %线性解码器************
    
    % 计算预测产生的误差
    Jcost = (0.5/m)*sum(sum((a3-data).^2));
    
    %计算权值惩罚项
    Jweight = (1/2)*(sum(sum(W1.^2))+sum(sum(W2.^2)));
    
    %计算稀释性规则项
    rho = (1/m).*sum(a2,2);%求出第一个隐含层的平均值向量
    Jsparse = sum(sparsityParam.*log(sparsityParam./rho)+ ...
            (1-sparsityParam).*log((1-sparsityParam)./(1-rho)));
    
    %损失函数的总表达式
    cost = Jcost+lambda*Jweight+beta*Jsparse;
    
    %反向算法求出每个节点的误差值
    d3 = -(data-a3);                                         %线性解码器**************
    sterm = beta*(-sparsityParam./rho+(1-sparsityParam)./(1-rho));%因为加入了稀疏规则项,所以
                                                                 %计算偏导时需要引入该项
    d2 = (W2'*d3+repmat(sterm,1,m)).*sigmoidInv(z2); 
    
    %计算W1grad 
    W1grad = W1grad+d2*data';
    W1grad = (1/m)*W1grad+lambda*W1;
    
    %计算W2grad  
    W2grad = W2grad+d3*a2';
    W2grad = (1/m).*W2grad+lambda*W2;
    
    %计算b1grad 
    b1grad = b1grad+sum(d2,2);
    b1grad = (1/m)*b1grad;%注意b的偏导是一个向量,所以这里应该把每一行的值累加起来
    
    %计算b2grad 
    b2grad = b2grad+sum(d3,2);
    b2grad = (1/m)*b2grad;
    
    %-------------------------------------------------------------------
    % After computing the cost and gradient, we will convert the gradients back
    % to a vector format (suitable for minFunc).  Specifically, we will unroll
    % your gradient matrices into a vector.
    
    grad = [W1grad(:) ; W2grad(:) ; b1grad(:) ; b2grad(:)];
    
    end
    
    %-------------------------------------------------------------------
    % Here's an implementation of the sigmoid function, which you may find useful
    % in your computation of the costs and the gradients.  This inputs a (row or
    % column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)). 
    
    function sigm = sigmoid(x)
    
        sigm = 1 ./ (1 + exp(-x));
    end
    
    %sigmoid函数的逆函数
    function sigmInv = sigmoidInv(x)
    
        sigmInv = sigmoid(x).*(1-sigmoid(x));
    end
    

    只是对稀疏自编码器的代码进行了两处稍微的改动。

    结果:

    学习到的特征也放在了STL10Features.mat里,将要在下一章的练习中用到。

     PS:讲义地址:

    http://deeplearning.stanford.edu/wiki/index.php/Linear_Decoders

    http://deeplearning.stanford.edu/wiki/index.php/Exercise:Learning_color_features_with_Sparse_Autoencoders

  • 相关阅读:
    Xml---->JAXP DOM解析
    java(web)相对路径,绝对路径
    重定向与转发
    struts2之限制文件上传类型
    Struts2之文件上传上限
    Struts2之result中标准结果代码
    struts2之指定处理的请求后缀
    File.rename操作后,获取文件的名称,输出的名称仍为之前的名称
    硬盤掛載
    Java应用打包后运行需要注意编码问题 .
  • 原文地址:https://www.cnblogs.com/bzjia-blog/p/3406980.html
Copyright © 2020-2023  润新知