「NOI2018」屠龙勇士
首先对于每个龙用哪个剑砍,我们可以用set随便模拟一下得到。
然后求出拿这个剑砍这条龙的答案
[atk_ix-p_iy=a_i
]
其中(atk_i)是砍第(i)条龙的剑的攻击力,(p_i)是龙的回复系数,(a_i)是初始生命值,然后(x)就是单独考虑这个剑砍这个龙的答案。
我们可以拿exgcd去解这个方程,但是冷静分析一波,我们发现回复次数(y)需要非负。
然后我们再冷静一波,发现(p_i ot=1)的数据都有一个叫性质(1)的东西是(a_ile p_i)
在性质(1)的情况下,因为(atk_i)和(x)都是非负的,所以(y<0)的时候显然是无解的
然后发现(p_i)都等于(1)的时候,我们只需要取最大的生命值就可以了
然后快乐的解一下这个方程
注意一件事,可以得到通解(x)是在(pmod {frac{p_i}{gcd(p_i,atk_i)}})下的
这样我们就得到了很多个同余方程,然后excrt合并就可以了
Code:
#include <cstdio>
#include <cctype>
#include <algorithm>
#include <set>
#define ll long long
using std::max;
const int SIZE=1<<21;
char ibuf[SIZE],*iS,*iT;
#define gc() (iS==iT?(iT=(iS=ibuf)+fread(ibuf,1,SIZE,stdin),iS==iT?EOF:*iS++):*iS++)
//#define gc() getchar()
template <class T>
void read(T &x)
{
x=0;char c=gc();
while(!isdigit(c)) c=gc();
while(isdigit(c)) x=x*10+c-'0',c=gc();
}
std::multiset <ll> s;
std::multiset <ll>::iterator it;
const int N=1e5+10;
int n,m;
ll hp[N],p[N],atk[N],A[N],B[N];
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
void exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b)
{
x=1,y=0;
return;
}
exgcd(b,a%b,x,y);
ll tmp=x;
x=y;
y=tmp-a/b*y;
}
ll mul(ll d,ll k,ll p)
{
ll f=0;
while(k)
{
if(k&1) (f+=d)%=p;
(d+=d)%=p;
k>>=1;
}
return f;
}
void work()
{
ll mx=0;
s.clear();
read(n),read(m);
for(int i=1;i<=n;i++) read(hp[i]);
for(int i=1;i<=n;i++) read(p[i]);
for(int i=1;i<=n;i++) read(atk[i]);
for(int i=1;i<=m;i++)
{
ll x;
read(x);
s.insert(x);
}
for(int i=1;i<=n;i++)
{
ll a,b,c,x,y;
it=s.upper_bound(hp[i]);
if(it==s.begin())
{
b=*it;
s.erase(it);
}
else
{
it--;
b=*it;
s.erase(it);
}
a=b,b=p[i],c=hp[i];
ll d=gcd(a,b);
if(c%d!=0)
{
puts("-1");
return;
}
mx=max(mx,(c-1)/a+1);
exgcd(a,b,x,y);
x=mul(x,c/d,b/d);
x=(x%(b/d)+b/d)%(b/d);
A[i]=x,B[i]=b/d;
s.insert(atk[i]);
}
for(int i=2;i<=n;i++)
{
if(A[i]==A[i-1])
{
B[i]=B[i]/gcd(B[i],B[i-1])*B[i-1];
continue;
}
if(A[i]<A[i-1]) std::swap(A[i],A[i-1]),std::swap(B[i],B[i-1]);
ll a=B[i-1],b=B[i],c=A[i]-A[i-1],d=gcd(a,b),x,y;
if(c%d!=0)
{
puts("-1");
return;
}
exgcd(a,b,x,y);
x=mul(x,c/d,b/d);
B[i]=a/d*b;
A[i]=((A[i-1]+mul(x,B[i-1],B[i]))%B[i]+B[i])%B[i];
}
printf("%lld
",max(A[n],mx));
}
int main()
{
freopen("dragon.in","r",stdin);
freopen("dragon.out","w",stdout);
int T;read(T);
while(T--) work();
return 0;
}
2019.4.30