上两篇文章分别用朴素贝叶斯算法和KNN算法对newgroup文本进行了分类測试。本文使用Kmeans算法对文本进行聚类。
1、文本预处理
文本预处理在前面两本文章中已经介绍,此处(略)。
2、文本向量化
package com.datamine.kmeans; import java.io.*; import java.util.*; import java.util.Map.Entry; /** * 计算文档的属性向量,将全部文档向量化 * @author Administrator */ public class ComputeWordsVector { /** * 计算文档的TF-IDF属性向量。返回Map<文件名称,<特征词,TF-IDF值>> * @param testSampleDir 处理好的聚类样本測试例子集 * @return 全部測试例子的属性向量构成的map * @throws IOException */ public Map<String,Map<String,Double>> computeTFMultiIDF(String testSampleDir) throws IOException{ String word; Map<String,Map<String,Double>> allTestSampleMap = new TreeMap<String, Map<String,Double>>(); Map<String,Double> idfPerWordMap = computeIDF(testSampleDir); Map<String,Double> tfPerDocMap = new TreeMap<String, Double>(); File[] samples = new File(testSampleDir).listFiles(); System.out.println("the total number of test files is " + samples.length); for(int i = 0;i<samples.length;i++){ tfPerDocMap.clear(); FileReader samReader = new FileReader(samples[i]); BufferedReader samBR = new BufferedReader(samReader); Double wordSumPerDoc = 0.0; //计算每篇文档的总词数 while((word = samBR.readLine()) != null){ if(!word.isEmpty()){ wordSumPerDoc++; if(tfPerDocMap.containsKey(word)) tfPerDocMap.put(word, tfPerDocMap.get(word)+1.0); else tfPerDocMap.put(word, 1.0); } } Double maxCount = 0.0,wordWeight; //记录出现次数最多的词的次数,用作归一化 ??? Set<Map.Entry<String, Double>> tempTF = tfPerDocMap.entrySet(); for(Iterator<Map.Entry<String, Double>> mt = tempTF.iterator();mt.hasNext();){ Map.Entry<String, Double> me = mt.next(); if(me.getValue() > maxCount) maxCount = me.getValue(); } for(Iterator<Map.Entry<String, Double>> mt = tempTF.iterator();mt.hasNext();){ Map.Entry<String, Double> me = mt.next(); Double IDF = Math.log(samples.length / idfPerWordMap.get(me.getKey())); wordWeight = (me.getValue() / wordSumPerDoc) * IDF; tfPerDocMap.put(me.getKey(), wordWeight); } TreeMap<String,Double> tempMap = new TreeMap<String, Double>(); tempMap.putAll(tfPerDocMap); allTestSampleMap.put(samples[i].getName(), tempMap); } printTestSampleMap(allTestSampleMap); return allTestSampleMap; } /** * 输出測试例子map内容,用于測试 * @param allTestSampleMap * @throws IOException */ private void printTestSampleMap( Map<String, Map<String, Double>> allTestSampleMap) throws IOException { // TODO Auto-generated method stub File outPutFile = new File("E:/DataMiningSample/KmeansClusterResult/allTestSampleMap.txt"); FileWriter outPutFileWriter = new FileWriter(outPutFile); Set<Map.Entry<String, Map<String,Double>>> allWords = allTestSampleMap.entrySet(); for(Iterator<Entry<String, Map<String, Double>>> it = allWords.iterator();it.hasNext();){ Map.Entry<String, Map<String,Double>> me = it.next(); outPutFileWriter.append(me.getKey()+" "); Set<Map.Entry<String, Double>> vectorSet = me.getValue().entrySet(); for(Iterator<Map.Entry<String, Double>> vt = vectorSet.iterator();vt.hasNext();){ Map.Entry<String, Double> vme = vt.next(); outPutFileWriter.append(vme.getKey()+" "+vme.getValue()+" "); } outPutFileWriter.append(" "); outPutFileWriter.flush(); } outPutFileWriter.close(); } /** * 统计每一个词的总出现次数,返回出现次数大于n次的词汇构成终于的属性词典 * @param strDir 处理好的newsgroup文件文件夹的绝对路径 * @param wordMap 记录出现的每一个词构成的属性词典 * @return newWordMap 返回出现次数大于n次的词汇构成终于的属性词典 * @throws IOException */ public SortedMap<String, Double> countWords(String strDir, Map<String, Double> wordMap) throws IOException { File sampleFile = new File(strDir); File[] sample = sampleFile.listFiles(); String word; for(int i =0 ;i < sample.length;i++){ if(!sample[i].isDirectory()){ FileReader samReader = new FileReader(sample[i]); BufferedReader samBR = new BufferedReader(samReader); while((word = samBR.readLine()) != null){ if(!word.isEmpty() && wordMap.containsKey(word)) wordMap.put(word, wordMap.get(word)+1); else wordMap.put(word, 1.0); } samBR.close(); }else{ countWords(sample[i].getCanonicalPath(),wordMap); } } /* * 去除停顿词后。先用DF算法选取特征词,后面再增加特征词的选取算法 */ SortedMap<String,Double> newWordMap = new TreeMap<String, Double>(); Set<Map.Entry<String, Double>> allWords = wordMap.entrySet(); for(Iterator<Map.Entry<String, Double>> it = allWords.iterator();it.hasNext();){ Map.Entry<String, Double> me = it.next(); if(me.getValue() > 100) //DF算法降维 newWordMap.put(me.getKey(), me.getValue()); } return newWordMap; } /** * 计算IDF,即属性词典中每一个词在多少个文档中出现过 * @param testSampleDir 聚类算法測试样本所在的文件夹 * @return 单词IDFmap <单词,包括该单词的文档数> * @throws IOException */ public Map<String,Double> computeIDF(String testSampleDir) throws IOException{ Map<String,Double> IDFPerWordMap = new TreeMap<String, Double>(); //记下当前已经遇到过的该文档中的词 Set<String> alreadyCountWord = new HashSet<String>(); String word; File[] samples = new File(testSampleDir).listFiles(); for(int i = 0;i<samples.length;i++){ alreadyCountWord.clear(); FileReader tsReader = new FileReader(samples[i]); BufferedReader tsBR = new BufferedReader(tsReader); while((word = tsBR.readLine()) != null){ if(!alreadyCountWord.contains(word)){ if(IDFPerWordMap.containsKey(word)) IDFPerWordMap.put(word, IDFPerWordMap.get(word)+1.0); else IDFPerWordMap.put(word, 1.0); alreadyCountWord.add(word); } } } return IDFPerWordMap; } /** * 创建聚类算法的測试例子集。主要是过滤出仅仅含有特征词的文档写到一个文件夹下 * @param srcDir 源文件夹,已经预处理可是还没有过滤非特征词的文档文件夹 * @param desDir 目的文件夹,聚类算法的測试例子文件夹 * @return 创建測试例子集中特征词数组 * @throws IOException */ public String[] createTestSamples(String srcDir, String desDir) throws IOException { SortedMap<String,Double> wordMap = new TreeMap<String, Double>(); wordMap = countWords(srcDir,wordMap); System.out.println("special words map sizes:" + wordMap.size()); String word,testSampleFile; File[] sampleDir = new File(srcDir).listFiles(); for(int i =0;i<sampleDir.length;i++){ File[] sample = sampleDir[i].listFiles(); for(int j =0;j<sample.length;j++){ testSampleFile = desDir + sampleDir[i].getName()+"_"+sample[j].getName(); FileReader samReader = new FileReader(sample[j]); BufferedReader samBR = new BufferedReader(samReader); FileWriter tsWriter = new FileWriter(new File(testSampleFile)); while((word = samBR.readLine()) != null){ if(wordMap.containsKey(word)) tsWriter.append(word + " "); } tsWriter.flush(); tsWriter.close(); } } //返回属性词典 String[] terms = new String[wordMap.size()]; int i = 0; Set<Map.Entry<String, Double>> allWords = wordMap.entrySet(); for(Iterator<Map.Entry<String, Double>> it = allWords.iterator();it.hasNext();){ Map.Entry<String, Double> me = it.next(); terms[i] = me.getKey(); i++; } return terms; } }
3、Kmeans算法
Kmeans算法是很经典的聚类算法,算法主要过程例如以下:先选K个(或者随机选择)初始聚类点作为初始中心点,然后就算其它全部点到K个聚类中心点的距离,将点分到近期的聚类中。聚类完后。再次计算各个类中的中心点,中心点发生变化,于是更新中心点,然后再计算其它点到中心点的距离又一次聚类。中心点又发生变化,如此迭代下去。
初始点选取策略:随机选。均匀抽样,最大最小法等....
距离的度量方法:1-余弦相似度,2-向量内积
算法停止条件:计算准则函数及设置最大迭代次数
空聚类的处理:注意空聚类导致的程序bug
package com.datamine.kmeans; import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.FileWriter; import java.io.IOException; import java.util.*; /** * kmeans聚类算法的实现类,将newsgroup文档集聚成10类、20类、30类 * 算法结束条件:当每一个点近期的聚类中心点就是它所属的聚类中心点时。算法结束 * @author Administrator * */ public class KmeansCluster { /** * kmeans算法主过程 * @param allTestSampleMap 聚类算法測试样本map(已经向量化) <文件名称,<特征词,TF-IDF值>> * @param k 聚类的数量 * @return 聚类结果 <文件名称,聚类完毕后所属的类别号> */ private Map<String, Integer> doProcess( Map<String, Map<String, Double>> allTestSampleMap, int k) { //0、首先获取allTestSampleMap全部文件名称顺序组成的数组 String[] testSampleNames = new String[allTestSampleMap.size()]; int count =0,tsLength = allTestSampleMap.size(); Set<Map.Entry<String, Map<String,Double>>> allTestSampleMapSet = allTestSampleMap.entrySet(); for(Iterator<Map.Entry<String, Map<String,Double>>> it = allTestSampleMapSet.iterator();it.hasNext();){ Map.Entry<String, Map<String,Double>> me = it.next(); testSampleNames[count++] = me.getKey(); } //1、初始点的选择算法是随机选择或者是均匀分开选择。这里採用后者 Map<Integer,Map<String,Double>> meansMap = getInitPoint(allTestSampleMap,k); double [][] distance = new double[tsLength][k]; //distance[i][k]记录点i到聚类中心k的距离 //2、初始化k个聚类 int[] assignMeans = new int[tsLength]; //记录全部点属于的聚类序号,初始化全部为0 Map<Integer,Vector<Integer>> clusterMember = new TreeMap<Integer, Vector<Integer>>();//记录每一个聚类的成员点序号 Vector<Integer> mem = new Vector<Integer>(); int iterNum = 0; //迭代次数 while(true){ System.out.println("Iteration No." + (iterNum++) + "-------------------------"); //3、计算每一个点和每一个聚类中心的距离 for(int i = 0;i < tsLength;i++){ for(int j = 0;j<k;j++) distance[i][j] = getDistance(allTestSampleMap.get(testSampleNames[i]),meansMap.get(j)); } //4、找出每一个点近期的聚类中心 int [] nearestMeans = new int[tsLength]; for(int i = 0;i < tsLength;i++){ nearestMeans[i] = findNearestMeans(distance,i); } //5、推断当前全部点属于的聚类序号是否已经全部是其离的近期的聚类,假设是或者达到最大的迭代次数。那么结束算法 int okCount = 0; for(int i= 0;i<tsLength;i++){ if(nearestMeans[i] == assignMeans[i]) okCount ++; } System.out.println("okCount = " + okCount); if(okCount == tsLength || iterNum >= 10) break; //6、假设前面条件不满足,那么须要又一次聚类再次进行一次迭代,须要改动每一个聚类的成员和每一个点属于的聚类信息 clusterMember.clear(); for(int i = 0;i < tsLength;i++){ assignMeans[i] = nearestMeans[i]; if(clusterMember.containsKey(nearestMeans[i])){ clusterMember.get(nearestMeans[i]).add(i); } else{ mem.clear(); mem.add(i); Vector<Integer> tempMem = new Vector<Integer>(); tempMem.addAll(mem); clusterMember.put(nearestMeans[i], tempMem); } } //7、又一次计算每一个聚类的中心点 for(int i = 0;i<k;i++){ if(!clusterMember.containsKey(i)) //注意kmeans可能产生空聚类 continue; Map<String,Double> newMean = computeNewMean(clusterMember.get(i),allTestSampleMap,testSampleNames); Map<String,Double> tempMean = new TreeMap<String,Double>(); tempMean.putAll(newMean); meansMap.put(i, tempMean); } } //8、形成聚类结果而且返回 Map<String,Integer> resMap = new TreeMap<String,Integer>(); for(int i = 0;i<tsLength;i++){ resMap.put(testSampleNames[i], assignMeans[i]); } return resMap; } /** * 计算当前聚类的新中心,採用向量平均 * @param clusterM 该点到全部聚类中心的距离 * @param allTestSampleMap 全部測试例子 <文件名称,向量> * @param testSampleNames 全部測试例子名构成的数组 * @return 新的聚类中心向量 */ private Map<String, Double> computeNewMean(Vector<Integer> clusterM, Map<String, Map<String, Double>> allTestSampleMap, String[] testSampleNames) { double memberNum = (double)clusterM.size(); Map<String,Double> newMeanMap = new TreeMap<String,Double>(); Map<String,Double> currentMemMap = new TreeMap<String, Double>(); for(Iterator<Integer> it = clusterM.iterator();it.hasNext();){ int me = it.next(); currentMemMap = allTestSampleMap.get(testSampleNames[me]); Set<Map.Entry<String, Double>> currentMemMapSet = currentMemMap.entrySet(); for(Iterator<Map.Entry<String, Double>> jt = currentMemMapSet.iterator();jt.hasNext();){ Map.Entry<String, Double> ne = jt.next(); if(newMeanMap.containsKey(ne.getKey())) newMeanMap.put(ne.getKey(), newMeanMap.get(ne.getKey())+ne.getValue()); else newMeanMap.put(ne.getKey(), ne.getValue()); } } Set<Map.Entry<String, Double>> newMeanMapSet = newMeanMap.entrySet(); for(Iterator<Map.Entry<String, Double>> it = newMeanMapSet.iterator();it.hasNext();){ Map.Entry<String, Double> me = it.next(); newMeanMap.put(me.getKey(), newMeanMap.get(me.getKey()) / memberNum); } return newMeanMap; } /** * 找出距离当前点近期的聚类中心 * @param distance 点到全部聚类中心的距离 * @param m 点(文本号) * @return 近期聚类中心的序号j */ private int findNearestMeans(double[][] distance, int m) { double minDist = 10; int j = 0; for(int i = 0;i<distance[m].length;i++){ if(distance[m][i] < minDist){ minDist = distance[m][i]; j = i; } } return j; } /** * 计算两个点的距离 * @param map1 点1的向量map * @param map2 点2的向量map * @return 两个点的欧式距离 */ private double getDistance(Map<String, Double> map1, Map<String, Double> map2) { return 1 - computeSim(map1,map2); } /**计算两个文本的类似度 * @param testWordTFMap 文本1的<单词,词频>向量 * @param trainWordTFMap 文本2<单词,词频>向量 * @return Double 向量之间的类似度 以向量夹角余弦计算(加上凝视部分代码就可以)或者向量内积计算(不加凝视部分,效果相当而速度更快) * @throws IOException */ private double computeSim(Map<String, Double> testWordTFMap, Map<String, Double> trainWordTFMap) { // TODO Auto-generated method stub double mul = 0;//, testAbs = 0, trainAbs = 0; Set<Map.Entry<String, Double>> testWordTFMapSet = testWordTFMap.entrySet(); for(Iterator<Map.Entry<String, Double>> it = testWordTFMapSet.iterator(); it.hasNext();){ Map.Entry<String, Double> me = it.next(); if(trainWordTFMap.containsKey(me.getKey())){ mul += me.getValue()*trainWordTFMap.get(me.getKey()); } //testAbs += me.getValue() * me.getValue(); } //testAbs = Math.sqrt(testAbs); /*Set<Map.Entry<String, Double>> trainWordTFMapSet = trainWordTFMap.entrySet(); for(Iterator<Map.Entry<String, Double>> it = trainWordTFMapSet.iterator(); it.hasNext();){ Map.Entry<String, Double> me = it.next(); trainAbs += me.getValue()*me.getValue(); } trainAbs = Math.sqrt(trainAbs);*/ return mul ;/// (testAbs * trainAbs); } /** * 获取kmeans算法迭代的初始点 * @param allTestSampleMap <文件名称,<特征词。TF-IDF值>> * @param k 聚类的数量 * @return meansMap k个聚类的中心点向量 */ private Map<Integer, Map<String, Double>> getInitPoint( Map<String, Map<String, Double>> allTestSampleMap, int k) { int count = 0, i = 0; //保存k个聚类的中心向量 Map<Integer,Map<String,Double>> meansMap = new TreeMap<Integer, Map<String,Double>>(); System.out.println("本次聚类的初始点相应的文件为:"); Set<Map.Entry<String, Map<String,Double>>> allTestSampleMapSet = allTestSampleMap.entrySet(); for(Iterator<Map.Entry<String, Map<String,Double>>> it = allTestSampleMapSet.iterator();it.hasNext();){ Map.Entry<String, Map<String,Double>> me = it.next(); if(count == i*allTestSampleMapSet.size() / k){ meansMap.put(i, me.getValue()); System.out.println(me.getKey()); i++; } count++ ; } return meansMap; } /** * 输出聚类结果到文件里 * @param kmeansClusterResult 聚类结果 * @param kmeansClusterResultFile 输出聚类结果到文件里 * @throws IOException */ private void printClusterResult(Map<String, Integer> kmeansClusterResult, String kmeansClusterResultFile) throws IOException { FileWriter resultWriter = new FileWriter(kmeansClusterResultFile); Set<Map.Entry<String, Integer>> kmeansClusterResultSet = kmeansClusterResult.entrySet(); for(Iterator<Map.Entry<String, Integer>> it = kmeansClusterResultSet.iterator();it.hasNext();){ Map.Entry<String, Integer> me = it.next(); resultWriter.append(me.getKey()+" "+me.getValue()+" "); } resultWriter.flush(); resultWriter.close(); } /** * 评估函数依据聚类结果文件统计熵 和 混淆矩阵 * @param kmeansClusterResultFile 聚类结果文件 * @param k 聚类数目 * @return 聚类结果的熵值 * @throws IOException */ private double evaluateClusterResult(String kmeansClusterResultFile, int k) throws IOException { Map<String,String> rightCate = new TreeMap<String, String>(); Map<String,String> resultCate = new TreeMap<String, String>(); FileReader crReader = new FileReader(kmeansClusterResultFile); BufferedReader crBR = new BufferedReader(crReader); String[] s; String line; while((line = crBR.readLine()) != null){ s = line.split(" "); resultCate.put(s[0], s[1]); rightCate.put(s[0], s[0].split("_")[0]); } crBR.close(); return computeEntropyAndConfuMatrix(rightCate,resultCate,k);//返回熵 } /** * 计算混淆矩阵并输出,返回熵 * @param rightCate 正确的类目相应map * @param resultCate 聚类结果相应map * @param k 聚类的数目 * @return 返回聚类熵 */ private double computeEntropyAndConfuMatrix(Map<String, String> rightCate, Map<String, String> resultCate, int k) { //k行20列,[i,j]表示聚类i中属于类目j的文件数 int[][] confusionMatrix = new int[k][20]; //首先求出类目相应的数组索引 SortedSet<String> cateNames = new TreeSet<String>(); Set<Map.Entry<String, String>> rightCateSet = rightCate.entrySet(); for(Iterator<Map.Entry<String, String>> it = rightCateSet.iterator();it.hasNext();){ Map.Entry<String, String> me = it.next(); cateNames.add(me.getValue()); } String[] cateNamesArray = cateNames.toArray(new String[0]); Map<String,Integer> cateNamesToIndex = new TreeMap<String, Integer>(); for(int i =0;i < cateNamesArray.length ;i++){ cateNamesToIndex.put(cateNamesArray[i], i); } for(Iterator<Map.Entry<String, String>> it = rightCateSet.iterator();it.hasNext();){ Map.Entry<String, String> me = it.next(); confusionMatrix[Integer.parseInt(resultCate.get(me.getKey()))][cateNamesToIndex.get(me.getValue())]++; } //输出混淆矩阵 double [] clusterSum = new double[k]; //记录每一个聚类的文件数 double [] everyClusterEntropy = new double[k]; //记录每一个聚类的熵 double clusterEntropy = 0; System.out.print(" "); for(int i=0;i<20;i++){ System.out.printf("%-6d",i); } System.out.println(); for(int i =0;i<k;i++){ System.out.printf("%-6d",i); for(int j = 0;j<20;j++){ clusterSum[i] += confusionMatrix[i][j]; System.out.printf("%-6d",confusionMatrix[i][j]); } System.out.println(); } System.out.println(); //计算熵值 for(int i = 0;i<k;i++){ if(clusterSum[i] != 0){ for(int j = 0;j< 20 ;j++){ double p = (double)confusionMatrix[i][j]/clusterSum[i]; if(p!=0) everyClusterEntropy[i] += -p * Math.log(p); } clusterEntropy += clusterSum[i]/(double)rightCate.size() * everyClusterEntropy[i]; } } return clusterEntropy; } public void KmeansClusterMain(String testSampleDir) throws IOException { //首先计算文档TF-IDF向量,保存为Map<String,Map<String,Double>> 即为Map<文件名称,Map<特征词,TF-IDF值>> ComputeWordsVector computV = new ComputeWordsVector(); //int k[] = {10,20,30}; 三组分类 int k[] = {20}; Map<String,Map<String,Double>> allTestSampleMap = computV.computeTFMultiIDF(testSampleDir); for(int i =0;i<k.length;i++){ System.out.println("開始聚类。聚成"+k[i]+"类"); String KmeansClusterResultFile = "E:\DataMiningSample\KmeansClusterResult\"; Map<String,Integer> KmeansClusterResult = new TreeMap<String, Integer>(); KmeansClusterResult = doProcess(allTestSampleMap,k[i]); KmeansClusterResultFile += k[i]; printClusterResult(KmeansClusterResult,KmeansClusterResultFile); System.out.println("The Entropy for this Cluster is " + evaluateClusterResult(KmeansClusterResultFile,k[i])); } } public static void main(String[] args) throws IOException { KmeansCluster test = new KmeansCluster(); String KmeansClusterResultFile = "E:\DataMiningSample\KmeansClusterResult\20"; System.out.println("The Entropy for this Cluster is " + test.evaluateClusterResult(KmeansClusterResultFile,20)); } }
4、程序入口
package com.datamine.kmeans; import java.io.IOException; import java.text.SimpleDateFormat; import java.util.Date; public class ClusterMain { /** * Kmeans 聚类主程序入口 * @param args * @throws IOException */ public static void main(String[] args) throws IOException { //数据预处理 在分类算法中已经实现 这里(略) ComputeWordsVector computeV = new ComputeWordsVector(); KmeansCluster kmeansCluster = new KmeansCluster(); String srcDir = "E:\DataMiningSample\processedSample\"; String desDir = "E:\DataMiningSample\clusterTestSample\"; SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); String beginTime = sdf.format(new Date()); System.out.println("程序開始运行时间:"+beginTime); String[] terms = computeV.createTestSamples(srcDir,desDir); kmeansCluster.KmeansClusterMain(desDir); String endTime = sdf.format(new Date()); System.out.println("程序结束运行时间:"+endTime); } }
5、聚类结果
程序開始运行时间:2016-03-14 17:02:38 special words map sizes:3832 the total number of test files is 18828 開始聚类,聚成20类 本次聚类的初始点相应的文件为: alt.atheism_49960 comp.graphics_38307 comp.os.ms-windows.misc_10112 comp.sys.ibm.pc.hardware_58990 comp.sys.mac.hardware_50449 comp.windows.x_66402 comp.windows.x_68299 misc.forsale_76828 rec.autos_103685 rec.motorcycles_105046 rec.sport.baseball_104941 rec.sport.hockey_54126 sci.crypt_15819 sci.electronics_54016 sci.med_59222 sci.space_61185 soc.religion.christian_20966 talk.politics.guns_54517 talk.politics.mideast_76331 talk.politics.misc_178699 Iteration No.0------------------------- okCount = 512 Iteration No.1------------------------- okCount = 10372 Iteration No.2------------------------- okCount = 15295 Iteration No.3------------------------- okCount = 17033 Iteration No.4------------------------- okCount = 17643 Iteration No.5------------------------- okCount = 18052 Iteration No.6------------------------- okCount = 18282 Iteration No.7------------------------- okCount = 18404 Iteration No.8------------------------- okCount = 18500 Iteration No.9------------------------- okCount = 18627 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 0 482 0 3 3 1 1 0 5 2 1 0 0 2 27 11 53 4 6 15 176 1 4 601 69 8 14 127 7 5 5 8 0 14 31 16 34 2 2 2 1 5 2 1 64 661 96 18 257 26 9 3 0 0 13 25 13 6 2 3 2 6 2 3 0 56 78 575 213 15 119 15 6 2 1 4 131 2 4 2 6 0 2 1 4 1 25 13 151 563 11 50 3 3 1 2 14 125 4 8 1 0 3 0 0 5 2 28 78 25 37 348 13 2 0 0 2 5 38 5 6 2 1 1 2 8 6 20 80 24 21 23 166 38 45 45 26 10 37 87 34 27 22 15 8 35 12 7 4 20 6 24 45 6 629 28 20 14 0 3 87 10 4 1 8 0 13 0 8 0 2 1 10 8 4 25 781 40 1 1 0 70 5 10 2 8 4 2 3 9 4 2 11 0 1 1 11 34 831 1 0 1 7 7 0 1 1 1 8 0 10 10 7 6 2 4 1 7 7 4 633 4 5 11 18 9 5 13 8 10 3 11 1 0 1 9 4 1 20 1 3 286 961 0 17 8 4 2 2 0 5 3 12 3 14 0 6 1 2 2 0 1 1 0 858 51 1 1 2 16 8 69 4 13 3 15 4 7 7 17 5 12 8 5 2 5 46 13 793 6 5 2 30 5 14 2 4 0 1 0 2 4 6 3 4 4 2 14 746 3 1 2 3 55 11 15 30 43 29 39 15 18 12 13 7 3 4 13 195 38 36 5 6 18 5 11 16 195 1 0 2 0 1 1 0 4 1 4 1 4 16 6 846 3 6 16 274 17 8 2 0 2 4 2 1 5 7 0 0 10 30 12 5 28 363 9 289 23 18 19 1 0 0 2 0 0 6 0 1 1 3 1 3 2 9 8 843 48 18 19 10 8 1 1 1 0 2 13 2 6 3 3 9 12 18 5 444 16 164 69 The Entropy for this Cluster is 1.2444339205006887 程序结束运行时间:2016-03-14 17:08:24