题意
给出(x0,x1,a,b), (x_i = acdot x_{i-1} + bcdot x_{i-2}),问(x_n取模mod)
题解
用十进制快速幂,二进制快速幂是每到下一位就把a平方,十进制快速幂就是每到下一位就把a变成(a^{10}),乘10次方的过程再用二进制快速幂优化,总体复杂度就是(O(log_{10}{n}cdot log_2{10}))
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mx = 1e6+5;
ll mod, x0, x1, a, b;
struct mat {
ll a[2][2];
mat() {
clear();
a[0][0] = 1;
a[1][1] = 1;
}
void clear() {memset(a, 0, sizeof(a));}
mat operator * (mat other) {
mat tmp;
tmp.clear();
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 2; j++) {
for (int k = 0; k < 2; k++) {
//printf("%d %d %d
", tmp.a[i][j], a[i][k], other.a[k][j]);
tmp.a[i][j] += a[i][k] * other.a[k][j] % mod;
tmp.a[i][j] %= mod;
}
}
}
return tmp;
}
mat operator ^ (int y) {
mat ans = mat();
mat x = *this;
while (y > 0) {
if (y & 1) ans = ans * x;
x = x * x;
y /= 2;
}
return ans;
}
void show() {
for (int i = 0; i < 2; i++)
for (int j = 0; j < 2; j++)
printf("%d%c", a[i][j], j==1?'
':' ');
}
};
char str[mx];
int main() {
scanf("%lld%lld%lld%lld", &x0, &x1, &a, &b);
scanf("%s%lld", str, &mod);
mat base;
base.a[0][0] = a; base.a[0][1] = 1;
base.a[1][0] = b; base.a[1][1] = 0;
int len = std::strlen(str);
mat res = mat();
for (int i = len-1; i >= 0; i--) {
if (str[i] != 0) {
res = res * (base ^ (str[i]-'0'));
}
base = base ^ 10;
}
//res.show();
ll ans = x1 * res.a[0][1] + x0 * res.a[1][1];
ans = (ans % mod + mod) % mod;
printf("%lld
", ans);
return 0;
}