tflearn里 例子 https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_mnist.py
LRN是放到pool后面,全连接层前面。
# Building convolutional network network = input_data(shape=[None, 28, 28, 1], name='input') network = conv_2d(network, 32, 3, activation='relu', regularizer="L2") network = max_pool_2d(network, 2) network = local_response_normalization(network) network = conv_2d(network, 64, 3, activation='relu', regularizer="L2") network = max_pool_2d(network, 2) network = local_response_normalization(network) network = fully_connected(network, 128, activation='tanh') network = dropout(network, 0.8) network = fully_connected(network, 256, activation='tanh') network = dropout(network, 0.8) network = fully_connected(network, 10, activation='softmax') network = regression(network, optimizer='adam', learning_rate=0.01, loss='categorical_crossentropy', name='target')
Batch Normalization也应该如此吧???我看 https://github.com/tflearn/tflearn/blob/master/tflearn/layers/normalization.py LRN和BN都在一块。http://tflearn.org/layers/normalization/ 官方文档。
https://gist.github.com/daiwei89/a0d9600050003249e7c30f8e63742985 这是一个尝试例子,不过遇到了一些问题 https://github.com/tflearn/tflearn/issues/530
https://github.com/tflearn/tflearn/issues/398 这里有一个提问和解答但是没有太懂。
https://www.zhihu.com/question/53133249 知乎上有对于TensorFlow使用BN的讨论,因为其需要参数mean, variance
,这个得自己计算
。但是也有顶层的API,见 http://ruishu.io/2016/12/27/batchnorm/:
Batch Normalization The Easy Way Perhaps the easiest way to use batch normalization would be to simply use the tf.contrib.layers.batch_norm layer. So let’s give that a go! Let’s get some imports and data loading out of the way first. import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from utils import show_graph mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) Next, we define our typical fully-connected + batch normalization + nonlinearity set-up def dense(x, size, scope): return tf.contrib.layers.fully_connected(x, size, activation_fn=None, scope=scope) def dense_batch_relu(x, phase, scope): with tf.variable_scope(scope): h1 = tf.contrib.layers.fully_connected(x, 100, activation_fn=None, scope='dense') h2 = tf.contrib.layers.batch_norm(h1, center=True, scale=True, is_training=phase, scope='bn') return tf.nn.relu(h2, 'relu') One thing that might stand out is the phase term. We are going to use as a placeholder for a boolean which we will insert into feed_dict. It will serve as a binary indicator for whether we are in training phase=True or testing phase=False mode.
stackoverflow上提到:
Just to add to the list, there're several more ways to do batch-norm in tensorflow:
tf.nn.batch_normalization
is a low-level op. The caller is responsible to handlemean
andvariance
tensors themselves.tf.nn.fused_batch_norm
is another low-level op, similar to the previous one. The difference is that it's optimized for 4D input tensors, which is the usual case in convolutional neural networks.tf.nn.batch_normalization
accepts tensors of any rank greater than 1.tf.layers.batch_normalization
is a high-level wrapper over the previous ops. The biggest difference is that it takes care of creating and managing the running mean and variance tensors, and calls a fast fused op when possible. Usually, this should be the default choice for you.
见https://stackoverflow.com/questions/48001759/what-is-right-batch-normalization-function-in-tensorflow/48006315#48006315
现在可以解答前面的疑问了。
一个例子:
#for NeuralNetwork model code is below #We will use SGD for training to save our time. Code is from Assignment 2 #beta is the new parameter - controls level of regularization. #Feel free to play with it - the best one I found is 0.001 #notice, we introduce L2 for both biases and weights of all layers batch_size = 128 beta = 0.001 #building tensorflow graph graph = tf.Graph() with graph.as_default(): # Input data. For the training data, we use a placeholder that will be fed # at run time with a training minibatch. tf_train_dataset = tf.placeholder(tf.float32, shape=(batch_size, image_size * image_size)) tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels)) tf_valid_dataset = tf.constant(valid_dataset) tf_test_dataset = tf.constant(test_dataset) #introduce batchnorm tf_train_dataset_bn = tf.contrib.layers.batch_norm(tf_train_dataset) #now let's build our new hidden layer #that's how many hidden neurons we want num_hidden_neurons = 1024 #its weights hidden_weights = tf.Variable( tf.truncated_normal([image_size * image_size, num_hidden_neurons])) hidden_biases = tf.Variable(tf.zeros([num_hidden_neurons])) #now the layer itself. It multiplies data by weights, adds biases #and takes ReLU over result hidden_layer = tf.nn.relu(tf.matmul(tf_train_dataset_bn, hidden_weights) + hidden_biases) #adding the batch normalization layerhi() hidden_layer_bn = tf.contrib.layers.batch_norm(hidden_layer) #time to go for output linear layer #out weights connect hidden neurons to output labels #biases are added to output labels out_weights = tf.Variable( tf.truncated_normal([num_hidden_neurons, num_labels])) out_biases = tf.Variable(tf.zeros([num_labels])) #compute output out_layer = tf.matmul(hidden_layer_bn,out_weights) + out_biases #our real output is a softmax of prior result #and we also compute its cross-entropy to get our loss #Notice - we introduce our L2 here loss = (tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits( out_layer, tf_train_labels) + beta*tf.nn.l2_loss(hidden_weights) + beta*tf.nn.l2_loss(hidden_biases) + beta*tf.nn.l2_loss(out_weights) + beta*tf.nn.l2_loss(out_biases))) #now we just minimize this loss to actually train the network optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss) #nice, now let's calculate the predictions on each dataset for evaluating the #performance so far # Predictions for the training, validation, and test data. train_prediction = tf.nn.softmax(out_layer) valid_relu = tf.nn.relu( tf.matmul(tf_valid_dataset, hidden_weights) + hidden_biases) valid_prediction = tf.nn.softmax( tf.matmul(valid_relu, out_weights) + out_biases) test_relu = tf.nn.relu( tf.matmul( tf_test_dataset, hidden_weights) + hidden_biases) test_prediction = tf.nn.softmax(tf.matmul(test_relu, out_weights) + out_biases) #now is the actual training on the ANN we built #we will run it for some number of steps and evaluate the progress after #every 500 steps #number of steps we will train our ANN num_steps = 3001 #actual training with tf.Session(graph=graph) as session: tf.initialize_all_variables().run() print("Initialized") for step in range(num_steps): # Pick an offset within the training data, which has been randomized. # Note: we could use better randomization across epochs. offset = (step * batch_size) % (train_labels.shape[0] - batch_size) # Generate a minibatch. batch_data = train_dataset[offset:(offset + batch_size), :] batch_labels = train_labels[offset:(offset + batch_size), :] # Prepare a dictionary telling the session where to feed the minibatch. # The key of the dictionary is the placeholder node of the graph to be fed, # and the value is the numpy array to feed to it. feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels} _, l, predictions = session.run( [optimizer, loss, train_prediction], feed_dict=feed_dict) if (step % 500 == 0): print("Minibatch loss at step %d: %f" % (step, l)) print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels)) print("Validation accuracy: %.1f%%" % accuracy( valid_prediction.eval(), valid_labels)) print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels))
转自:https://www.jianshu.com/p/06216581c7ef
Batch Normalization 会使你的参数搜索问题变得很容易,使神经网络对超参数的选择更加稳定,超参数的范围会更加庞大,工作效果也很好,也会使你的训练更加容易,甚至是深层网络。
当训练一个模型,比如logistic回归时,你也许会记得,归一化输入特征可以加快学习过程。你计算了平均值,从训练集中减去平均值,计算了方差,接着根据方差归一化你的数据集,在之前的视频中我们看到,这是如何把学习问题的轮廓,从很长的东西,变成更圆的东西,更易于算法优化。所以对logistic回归和神经网络的归一化输入特征值而言这是有效的。
那么更深的模型呢?你不仅输入了特征值x,而且这层有激活值a[1],这层有激活值a[2]等等。如果你想训练这些参数,比如w[3],b[3],那归一化a[2]的平均值和方差岂不是很好?以便使w[3],b[3]的训练更有效率。
在神经网络中,已知一些中间值,假设你有一些隐藏单元值,从Z(1)到Z(m),这些来源于隐藏层,所以这样写会更准确,即z为隐藏层,i从 1到m。
在这里,我们分别介绍和使用来自tf.layers
高级 封装函数tf.layers.batch_normalization
和低级的tf.nn
中的tf.nn.batch_normalization
怎么加入batch normalization
我们又分为两种情况讨论:
- 全连接层
- 卷积层
使用tf.layers.batch_normalization
首先讨论全连接层,分为4个步骤:
- 加入 is_training 参数
- 从全连接层中移除激活函数和bias
- 使用
tf.layers.batch_normalization
函数 归一化层的输出
-传递归一化后的值给激活函数
def fully_connected(prev_layer, num_units, is_training):
"""
Create a fully connectd layer with the given layer as input and the given number of neurons.
:param prev_layer: Tensor
The Tensor that acts as input into this layer
:param num_units: int
The size of the layer. That is, the number of units, nodes, or neurons.
:param is_training: bool or Tensor
Indicates whether or not the network is currently training, which tells the batch normalization
layer whether or not it should update or use its population statistics.
:returns Tensor
A new fully connected layer
"""
layer = tf.layers.dense(prev_layer, num_units, use_bias=False, activation=None)
layer = tf.layers.batch_normalization(layer, training=is_training)
layer = tf.nn.relu(layer)
return layer
然后是卷积层加入batch normalization
- 加入 is_training 参数
- 从全连接层中移除激活函数和bias
- 使用
tf.layers.batch_normalization
函数 归一化层的输出 - 传递归一化后的值给激活函数
比较两者的区别,当你使用tf.layers时,对全连接层和卷积层时基本没有区别,使用tf.nn的时候,会有一些不同 。
一般来说,人们同意消除层的bias(因为批处理已经有了扩展和转换),并在层的非线性激活函数之前添加batch normalization。然而,对一些网络来说,使用其他方式也能很好工作。
在train方面,需要修改:
- 添加is_training ,一个占位符储存布尔量,表示网络是否在训练。
- 传递is_training给卷积层和全连接层
- 每次调用session.run(),都要给feed_dict传递合适的值
- 将train_opt放入
tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
下
使用tf.nn.batch_normalization
- 加入 is_training 参数
- 去除bias 以及激活函数
- 添加 gamma,beta,pop_mean,pop_variance变量
- 使用 tf.cond处理训练与测试的不同
- tf.nn.moments计算均值和方差。with tf.control_dependencies... 更新population statistics,tf.nn.batch_normalization 归一化层的输出
- 在测试时,用tf.nn.batch_normalization归一化层的输出,使用训练时候的population statistics
-加入激活函数
def fully_connected(prev_layer, num_units, is_training):
"""
Create a fully connectd layer with the given layer as input and the given number of neurons.
:param prev_layer: Tensor
The Tensor that acts as input into this layer
:param num_units: int
The size of the layer. That is, the number of units, nodes, or neurons.
:param is_training: bool or Tensor
Indicates whether or not the network is currently training, which tells the batch normalization
layer whether or not it should update or use its population statistics.
:returns Tensor
A new fully connected layer
"""
layer = tf.layers.dense(prev_layer, num_units, use_bias=False, activation=None)
gamma = tf.Variable(tf.ones([num_units]))
beta = tf.Variable(tf.zeros([num_units]))
pop_mean = tf.Variable(tf.zeros([num_units]), trainable=False)
pop_variance = tf.Variable(tf.ones([num_units]), trainable=False)
epsilon = 1e-3
def batch_norm_training():
batch_mean, batch_variance = tf.nn.moments(layer, [0])
decay = 0.99
train_mean = tf.assign(pop_mean, pop_mean * decay + batch_mean * (1 - decay))
train_variance = tf.assign(pop_variance, pop_variance * decay + batch_variance * (1 - decay))
with tf.control_dependencies([train_mean, train_variance]):
return tf.nn.batch_normalization(layer, batch_mean, batch_variance, beta, gamma, epsilon)
def batch_norm_inference():
return tf.nn.batch_normalization(layer, pop_mean, pop_variance, beta, gamma, epsilon)
batch_normalized_output = tf.cond(is_training, batch_norm_training, batch_norm_inference)
return tf.nn.relu(batch_normalized_output)
def conv_layer(prev_layer, layer_depth, is_training):
"""
Create a convolutional layer with the given layer as input.
:param prev_layer: Tensor
The Tensor that acts as input into this layer
:param layer_depth: int
We'll set the strides and number of feature maps based on the layer's depth in the network.
This is *not* a good way to make a CNN, but it helps us create this example with very little code.
:param is_training: bool or Tensor
Indicates whether or not the network is currently training, which tells the batch normalization
layer whether or not it should update or use its population statistics.
:returns Tensor
A new convolutional layer
"""
strides = 2 if layer_depth % 3 == 0 else 1
in_channels = prev_layer.get_shape().as_list()[3]
out_channels = layer_depth*4
weights = tf.Variable(
tf.truncated_normal([3, 3, in_channels, out_channels], stddev=0.05))
layer = tf.nn.conv2d(prev_layer, weights, strides=[1,strides, strides, 1], padding='SAME')
gamma = tf.Variable(tf.ones([out_channels]))
beta = tf.Variable(tf.zeros([out_channels]))
pop_mean = tf.Variable(tf.zeros([out_channels]), trainable=False)
pop_variance = tf.Variable(tf.ones([out_channels]), trainable=False)
epsilon = 1e-3
def batch_norm_training():
# Important to use the correct dimensions here to ensure the mean and variance are calculated
# per feature map instead of for the entire layer
batch_mean, batch_variance = tf.nn.moments(layer, [0,1,2], keep_dims=False)
decay = 0.99
train_mean = tf.assign(pop_mean, pop_mean * decay + batch_mean * (1 - decay))
train_variance = tf.assign(pop_variance, pop_variance * decay + batch_variance * (1 - decay))
with tf.control_dependencies([train_mean, train_variance]):
return tf.nn.batch_normalization(layer, batch_mean, batch_variance, beta, gamma, epsilon)
def batch_norm_inference():
return tf.nn.batch_normalization(layer, pop_mean, pop_variance, beta, gamma, epsilon)
batch_normalized_output = tf.cond(is_training, batch_norm_training, batch_norm_inference)
return tf.nn.relu(batch_normalized_output)
我们不用添加with tf.control_dependencies... ,因为我们手动更新 了populayions statistics 在全连接层 和卷积层
def train(num_batches, batch_size, learning_rate):
# Build placeholders for the input samples and labels
inputs = tf.placeholder(tf.float32, [None, 28, 28, 1])
labels = tf.placeholder(tf.float32, [None, 10])
# Add placeholder to indicate whether or not we're training the model
is_training = tf.placeholder(tf.bool)
# Feed the inputs into a series of 20 convolutional layers
layer = inputs
for layer_i in range(1, 20):
layer = conv_layer(layer, layer_i, is_training)
# Flatten the output from the convolutional layers
orig_shape = layer.get_shape().as_list()
layer = tf.reshape(layer, shape=[-1, orig_shape[1] * orig_shape[2] * orig_shape[3]])
# Add one fully connected layer
layer = fully_connected(layer, 100, is_training)
# Create the output layer with 1 node for each
logits = tf.layers.dense(layer, 10)
# Define loss and training operations
model_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=labels))
train_opt = tf.train.AdamOptimizer(learning_rate).minimize(model_loss)
# Create operations to test accuracy
correct_prediction = tf.equal(tf.argmax(logits,1), tf.argmax(labels,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# Train and test the network
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for batch_i in range(num_batches):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
# train this batch
sess.run(train_opt, {inputs: batch_xs, labels: batch_ys, is_training: True})
# Periodically check the validation or training loss and accuracy
if batch_i % 100 == 0:
loss, acc = sess.run([model_loss, accuracy], {inputs: mnist.validation.images,
labels: mnist.validation.labels,
is_training: False})
print('Batch: {:>2}: Validation loss: {:>3.5f}, Validation accuracy: {:>3.5f}'.format(batch_i, loss, acc))
elif batch_i % 25 == 0:
loss, acc = sess.run([model_loss, accuracy], {inputs: batch_xs, labels: batch_ys, is_training: False})
print('Batch: {:>2}: Training loss: {:>3.5f}, Training accuracy: {:>3.5f}'.format(batch_i, loss, acc))
# At the end, score the final accuracy for both the validation and test sets
acc = sess.run(accuracy, {inputs: mnist.validation.images,
labels: mnist.validation.labels,
is_training: False})
print('Final validation accuracy: {:>3.5f}'.format(acc))
acc = sess.run(accuracy, {inputs: mnist.test.images,
labels: mnist.test.labels,
is_training: False})
print('Final test accuracy: {:>3.5f}'.format(acc))
# Score the first 100 test images individually, just to make sure batch normalization really worked
correct = 0
for i in range(100):
correct += sess.run(accuracy,feed_dict={inputs: [mnist.test.images[i]],
labels: [mnist.test.labels[i]],
is_training: False})
print("Accuracy on 100 samples:", correct/100)
num_batches = 800
batch_size = 64
learning_rate = 0.002
tf.reset_default_graph()
with tf.Graph().as_default():
train(num_batches, batch_size, learning_rate)