题意:给出一个无向图,问从 1 点到 n 点然后又回到一点总共的最短路。
分析:这个题目不读细致的话可能会当做最短路来做,最短路求出来的不一定是最优的,他是两条分别最短,但不一定是和最短。
我们能够用费用流来非常轻易的解决,建边容量为1,费用为边权。然后源点s连 1 。费用0 。容量 2 ,n点连接汇点,容量2,费用0,,就能够了。
注意这个题目是无向图,所以要建双向边。
AC代码:
#include <iostream> #include <algorithm> #include <cstdio> #include <cstring> #include <cmath> #include <vector> #include <queue> #include <cstring> using namespace std; const int N = 1050; const int inf = 0x3f3f3f3f; #define Del(a,b) memset(a,b,sizeof(a)) struct Node { int from,to,cap,flow,cost; }; vector<int> v[N]; vector<Node> e; void add_Node(int from,int to,int cap,int cost) { e.push_back((Node){from,to,cap,0,cost}); e.push_back((Node){to,from,0,0,-cost}); int len = e.size()-1; v[to].push_back(len); v[from].push_back(len-1); } int vis[N],dis[N]; int father[N],pos[N]; bool BellManford(int s,int t,int& flow,int& cost) { Del(dis,inf); Del(vis,0); queue<int> q; q.push(s); vis[s]=1; father[s]=-1; dis[s] = 0; pos[s] = inf; while(!q.empty()) { int f = q.front(); q.pop(); vis[f] = 0; for(int i=0; i<v[f].size(); i++) { Node& tmp = e[v[f][i]]; if(tmp.cap>tmp.flow && dis[tmp.to] > dis[f] + tmp.cost) { dis[tmp.to] = dis[f] + tmp.cost; father[tmp.to] = v[f][i]; pos[tmp.to] = min(pos[f],tmp.cap - tmp.flow); if(vis[tmp.to] == 0) { vis[tmp.to]=1; q.push(tmp.to); } } } } if(dis[t] == inf) return false; flow += pos[t]; cost += dis[t]*pos[t]; for(int u = t; u!=s ; u = e[father[u]].from) { e[father[u]].flow += pos[t]; e[father[u]^1].flow -= pos[t]; } return true; } int Mincost(int s,int t) { int flow = 0, cost = 0; while(BellManford(s,t,flow,cost)){} return cost; } void Clear(int x) { for(int i=0; i<=x; i++) v[i].clear(); e.clear(); } int main() { int n,m; while(~scanf("%d%d",&n,&m)) { for(int i=0;i<m;i++) { int x,y,z; scanf("%d%d%d",&x,&y,&z); add_Node(x,y,1,z); add_Node(y,x,1,z); } int s = 0 ,t = n+1; add_Node(s,1,2,0); add_Node(n,t,2,0); int ans = Mincost(s,t); printf("%d ",ans); Clear(n+1); } return 0; }