• 萤火虫算法-python实现


    FAIndividual.py

     1 import numpy as np
     2 import ObjFunction
     3 
     4 
     5 class FAIndividual:
     6 
     7     '''
     8     individual of firefly algorithm
     9     '''
    10 
    11     def __init__(self,  vardim, bound):
    12         '''
    13         vardim: dimension of variables
    14         bound: boundaries of variables
    15         '''
    16         self.vardim = vardim
    17         self.bound = bound
    18         self.fitness = 0.
    19         self.trials = 0
    20 
    21     def generate(self):
    22         '''
    23         generate a random chromsome for firefly algorithm
    24         '''
    25         len = self.vardim
    26         rnd = np.random.random(size=len)
    27         self.chrom = np.zeros(len)
    28         for i in xrange(0, len):
    29             self.chrom[i] = self.bound[0, i] + 
    30                 (self.bound[1, i] - self.bound[0, i]) * rnd[i]
    31 
    32     def calculateFitness(self):
    33         '''
    34         calculate the fitness of the chromsome
    35         '''
    36         self.fitness = ObjFunction.GrieFunc(
    37             self.vardim, self.chrom, self.bound)

    FA.py

      1 import numpy as np
      2 from FAIndividual import FAIndividual
      3 import random
      4 import copy
      5 import matplotlib.pyplot as plt
      6 
      7 
      8 class FireflyAlgorithm:
      9 
     10     '''
     11     The class for firefly algorithm
     12     '''
     13 
     14     def __init__(self, sizepop, vardim, bound, MAXGEN, params):
     15         '''
     16         sizepop: population sizepop
     17         vardim: dimension of variables
     18         bound: boundaries of variables
     19         MAXGEN: termination condition
     20         param: algorithm required parameters, it is a list which is consisting of [beta0, gamma, alpha]
     21         '''
     22         self.sizepop = sizepop
     23         self.MAXGEN = MAXGEN
     24         self.vardim = vardim
     25         self.bound = bound
     26         self.population = []
     27         self.fitness = np.zeros((self.sizepop, 1))
     28         self.trace = np.zeros((self.MAXGEN, 2))
     29         self.params = params
     30 
     31     def initialize(self):
     32         '''
     33         initialize the population
     34         '''
     35         for i in xrange(0, self.sizepop):
     36             ind = FAIndividual(self.vardim, self.bound)
     37             ind.generate()
     38             self.population.append(ind)
     39 
     40     def evaluate(self):
     41         '''
     42         evaluation of the population fitnesses
     43         '''
     44         for i in xrange(0, self.sizepop):
     45             self.population[i].calculateFitness()
     46             self.fitness[i] = self.population[i].fitness
     47 
     48     def solve(self):
     49         '''
     50         evolution process of firefly algorithm
     51         '''
     52         self.t = 0
     53         self.initialize()
     54         self.evaluate()
     55         best = np.max(self.fitness)
     56         bestIndex = np.argmax(self.fitness)
     57         self.best = copy.deepcopy(self.population[bestIndex])
     58         self.avefitness = np.mean(self.fitness)
     59         self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
     60         self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
     61         print("Generation %d: optimal function value is: %f; average function value is %f" % (
     62             self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
     63         while (self.t < self.MAXGEN - 1):
     64             self.t += 1
     65             self.move()
     66             self.evaluate()
     67             best = np.max(self.fitness)
     68             bestIndex = np.argmax(self.fitness)
     69             if best > self.best.fitness:
     70                 self.best = copy.deepcopy(self.population[bestIndex])
     71             self.avefitness = np.mean(self.fitness)
     72             self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
     73             self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
     74             print("Generation %d: optimal function value is: %f; average function value is %f" % (
     75                 self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
     76 
     77         print("Optimal function value is: %f; " %
     78               self.trace[self.t, 0])
     79         print "Optimal solution is:"
     80         print self.best.chrom
     81         self.printResult()
     82 
     83     def move(self):
     84         '''
     85         move the a firefly to another brighter firefly
     86         '''
     87         for i in xrange(0, self.sizepop):
     88             for j in xrange(0, self.sizepop):
     89                 if self.fitness[j] > self.fitness[i]:
     90                     r = np.linalg.norm(
     91                         self.population[i].chrom - self.population[j].chrom)
     92                     beta = self.params[0] * 
     93                         np.exp(-1 * self.params[1] * (r ** 2))
     94                     # beta = 1 / (1 + self.params[1] * r)
     95                     # print beta
     96                     self.population[i].chrom += beta * (self.population[j].chrom - self.population[
     97                         i].chrom) + self.params[2] * np.random.uniform(low=-1, high=1, size=self.vardim)
     98                     for k in xrange(0, self.vardim):
     99                         if self.population[i].chrom[k] < self.bound[0, k]:
    100                             self.population[i].chrom[k] = self.bound[0, k]
    101                         if self.population[i].chrom[k] > self.bound[1, k]:
    102                             self.population[i].chrom[k] = self.bound[1, k]
    103                     self.population[i].calculateFitness()
    104                     self.fitness[i] = self.population[i].fitness
    105 
    106     def printResult(self):
    107         '''
    108         plot the result of the firefly algorithm
    109         '''
    110         x = np.arange(0, self.MAXGEN)
    111         y1 = self.trace[:, 0]
    112         y2 = self.trace[:, 1]
    113         plt.plot(x, y1, 'r', label='optimal value')
    114         plt.plot(x, y2, 'g', label='average value')
    115         plt.xlabel("Iteration")
    116         plt.ylabel("function value")
    117         plt.title("Firefly Algorithm for function optimization")
    118         plt.legend()
    119         plt.show()

    运行程序:

    1 if __name__ == "__main__":
    2 
    3     bound = np.tile([[-600], [600]], 25)
    4     fa = FA(60, 25, bound, 200, [1.0, 0.000001, 0.6])
    5     fa.solve()

    ObjFunction见简单遗传算法-python实现

  • 相关阅读:
    大话串口:我和它的恩恩怨怨
    分布式网游server的一些想法(一) 语言和平台的选择
    C++: C没有闭包真的很痛苦……
    C++不是C/C++
    最美树算法
    类魔兽世界 技能 天赋 成就 log 系统设计
    C++网游服务端开发(一):又无奈的重复造了个轮子,一个底层网络库
    C++ protobuf 不仅仅是序列化……
    深入WPFStyle
    Illusion = Caliburn.Micro + MEF
  • 原文地址:https://www.cnblogs.com/biaoyu/p/4865368.html
Copyright © 2020-2023  润新知