DDR SDRAM 全称为 Double Data Rate SDRAM,中文名为“双倍数据流 SDRAM”。DDR SDRAM 在原有的 SDRAM的基础上改进而来。下图是DDR和SDRAM的数据传输对比图
图上可以清楚的看到,DDR SDRAM可在一个时钟周期内传送两次数据,上升沿传一次,下降沿传一次。
1.DDR的基本原理
先来看一张DDR读操作时序图
从中可以发现它多了两个信号:CLK#与DQS,CLK#与正常 CLK 时钟相位相反,形成差分时钟信号。而数据的传输在 CLK 与 CLK#的交叉点进行,可见在 CLK 的上升与下降沿(此时正好是 CLK#的上升沿)都有数据被触发,从而实现双倍数据传输,也就是DDR。下面来看DDR的内部结构图的SDRAM有什么不同。
这也是一颗 128Mbit 的内存芯片,标称规格为 32×4bit,右边红框区域就是DDR不同的地方:首先就是内部的L-Bank 规格。SDRAM 中L-Bank 存储单元的容量与芯片位宽相同,但在DDR SDRAM 中并不是这样,存储单元的容量是芯片位宽的一倍,所以在此不能再套用讲解 SDRAM时“芯片位宽=存储单元容量”的公式了。也因此,真正的行、列地址数量也与同规格 SDRAM 不一样了。
以本芯片为例,在读取时,L-Bank 在内部时钟信号的触发下一次传送 8bit 的数据给读取锁存器,再分成两路 4bit 数据传给复用器,由后者将它们合并为一路 4bit 数据流,然后由发送器在 DQS 的控制下在外部时钟上升与下降沿分两次传输 4bit 的数据给北桥的内存控制器(在ARM和现在的CPU中,内存控制器是集成在CPU中的,现在的PC机中北桥已无内存控制器)。这样,如果时钟频率为 100MHz,那么在 I/O 端口处,由于是上下沿触发,那么就是传输频率就是 200MHz。
现在大家基本明白 DDR SDRAM 的工作原理了吧,这种内部存储单元容量(也可以称为芯片内部总线位宽)=2×芯片位宽(也可称为芯片 I/O 总线位宽)的设计,就是所谓的两位预取(2-bit Prefetch)。
2.DDR与SDRAM的异同
DDR SDRAM 与 SDRAM 一样,在开机时也要进行 MRS(ModeRegister Set,模式寄存器的设置),不过由于操作功能的增多,DDR SDRAM 在 MRS 之前还多了一 EMRS 阶段(Extended Mode Register Set,扩展模式寄存器设置),这个扩展模式寄存器控制着 DLL 的有效/禁止、输出驱动强度、QFC 有效/无效等。
CK#的作用,并不能理解为第二个触发时钟,而是起到触发时钟校准的作用。
DQS 在读取时与数据同步传输,那么接收时也是以 DQS 的上下沿为准吗?不,如果以 DQS 的上下沿区分数据周期的危险很大。由于芯片有预取的操作,所以输出时的同步很难控制,只能限制在一定的时间范围内,数据在各 I/O 端口的出现时间可能有快有慢,会与 DQS 有一定的间隔,这也就是为什么要有一个 tAC 规定的原因(DDR中的tAC是在DQS触发和数据真正出现在I/O总线上的间隔时间)。而在接收方,一切必须保证同步接收,不能有 tAC 之类的偏差。这样在写入时,芯片不再自己生成 DQS,而以发送方传来的 DQS 为基准,并相应延后一定的时间,在 DQS 的中部为数据周期的选取分割点(在读取时分割点就是上下沿),从这里分隔开两个传输周期。这样做的好处是,由于各数据信号都会有一个逻辑电平保持周期,即使发送时不同步,在 DQS 上下沿时都处于保持周期中,此时数据接收触发的准确性无疑是最高的。
在写入时,以 DQS 的高/低电平期中部为数据周期分割点,而不是上/下沿,但数据的接收触发仍为 DQS 的上/下沿。
5.写入延迟
另外,DDR 内存的数据真正写入由于要经过更多步骤的处理,所以写回时间(tWR)也明显延长,一般在3个时钟周期左右,而在 DDR-Ⅱ规范中更是将 tWR 列为模式寄存器的一项,可见它的重要性。
6.突发长度
在 DDR SDRAM 中,突发长度只有 2、4、8 三种选择,没有了随机存取的操作(突发长度为 1)和全页式突发。这是为什么呢?因为 L-Bank一次就存取两倍于芯片位宽的数据,所以芯片至少也要进行两次传输才可以,否则内部多出来的数据怎么处理?但是,突发长度的定义也与 SDRAM 的不一样了,它不再指所连续寻址的存储单元数量,而是指连续的传输周期数,每次是一个芯片位宽的数据。
DDR SDRAM 对时钟的精确性有着很高的要求,而 DDR SDRAM 有两个时钟,一个是外部的总线时钟,一个是内部的工作时钟,在理论上 DDR SDRAM 这两个时钟应该是同步的,但由于种种原因,如温度、电压波动而产生延迟使两者很难同步,更何况时钟频率本身也有不稳定的情况(SDRAM 也有内部时钟,不过因为它的工作/传输频率较低,所以内外同步问题并不突出)。
CC的方法则是比较内外部时钟的长短,如果内部时钟周期短了,就将所少的延迟加到下一个内部时钟周期里,然后再与外部时钟做比较,若是内部时钟周期长了,就将多出的延迟从下一个内部时钟中刨除,如此往复,最终使内外时钟同步。
CFM 式 DLL 工作示意图
CC 式 DLL 工作示意图
CFM 与 CC 各有优缺点,CFM 的校正速度快,仅用两个时钟周期,但容易受到噪音干扰,并且如果测量失误,则内部的延迟就永远错下去了。CC 的优点则是更稳定可靠,如果比较失败,延迟受影响的只是一个数据(而且不会太严重),不会涉及到后面的延迟修正,但它的修正时间要比 CFM 长。DLL 功能在 DDR SDRAM 中可以被禁止,但仅限于除错与评估操作,正常工作状态是自动有效的。
1.4-bit Prefetch
上一个对比图,看的会更清楚一点儿:
在 SDRAM 与 DDR 时代,这两个时钟频率是相同的,但在 DDR-Ⅱ内存中,内部时钟变成了外部时钟的一半。以 DDR-Ⅱ 533 为例,数据传输频率为 533MHz( 对于每个数据引脚,则是 533Mbps/pin),外部时钟频率为 266MHz,内部时钟频率为 133MHz。因为内部一次传输的数据就可供外部接口传输 4 次,虽然以 DDR 方式传输,但数据传输频率的基准— — 外部时钟频率仍要是内部时钟的两倍才行。
OCD 的主要用意在于调整 I/O 接口端的电压,来补偿上拉与下拉电阻值。目的是让 DQS 与 DQ 数据信号之间的偏差降低到最小。调校期间,分别测试 DQS 高电平/DQ 高电平,与 DQS 低电平/DQ 高电平时的同步情况,如果不满足要求,则通过设定突发长度的地址线来传送上拉/下拉电阻等级(加一档或减一档),直到测试合格才退出 OCD 操作。
2.2 片内终结(ODT,On-Die Termination)
上图中,左边就是DDR时代,在主板上完成信号终结,右边就是从DDR2开始,在内存芯片内部终结信号。在内存芯片工作时系统会把终结电阻器屏蔽,而对于暂时不工作的内存芯片则打开终结电阻器以减少信号的反射。由此DDR2内存控制器可以通过ODT同时管理所有内存引脚的信号终结。并且阻抗值也可以有多种选择。如0Ω、50Ω、75Ω、150Ω等等。并且内存控制器可以根据系统内干扰信号的强度自动调整阻值的大小。
2.3前置 CAS、附加潜伏期与写入潜伏期
这样,地址线可以立刻空出来,便于后面的行有效命令发出,避免造成命令冲突而被迫延后的情况发生,但读/写操作并没有因此而提前,仍有要保证有足够的延迟/潜伏期,为此,DDR-Ⅱ引入了附加潜伏期的概念(AL,Additive Latency),与 CL 一样,单位为时钟周期数。AL+CL 被定义为读取潜伏期(RL,Read Latency),相应的,DDR-Ⅱ还对写入潜伏期(WL,Write Latency)制定了标准,WL是指从写入命令发出到第一笔数据输入的潜伏期,不要将它和 tDQSS 弄混了,后者是指 DQS 而不是数据。按规定,WL=RL-1,即 AL+CL-1。
上图中,ACT表示的是激活信号,在没有前置 CAS 功能时,对其他 L-Bank 的寻址操作可能会因当前行的 CAS 命令占用地址线而延后,并使数据 I/O 总线出现空闲(上图中的BUBBLE处),当使用前置 CAS 后,消除了命令冲突并使数据 I/O 总线的利率提高。
设置 Posted-CAS 后,必须附加潜伏期以保证应有延迟,此时读取潜伏期(RL)就等于 AL+CL,从中可以看出 AL 的值为 CL+tRCD-1。