数组是存放在连续内存空间上的相同类型数据的集合。
需要两点注意的是
- 数组下标都是从0开始的。
- 数组内存空间的地址是连续的
正是因为数组的在内存空间的地址是连续的,所以我们在删除或者增添元素的时候,就难免要移动其他元素的地址。
01 二分查找
给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。
示例 1:
输入: nums = [-1,0,3,5,9,12], target = 9 输出: 4 解释: 9 出现在 nums 中并且下标为 4
示例 2:
输入: nums = [-1,0,3,5,9,12], target = 2 输出: -1 解释: 2 不存在 nums 中因此返回 -1
提示:
- 你可以假设 nums 中的所有元素是不重复的。
- n 将在 [1, 10000]之间。
- nums 的每个元素都将在 [-9999, 9999]之间。
思路
这道题目的前提是数组为有序数组,同时题目还强调数组中无重复元素,因为一旦有重复元素,使用二分查找法返回的元素下标可能不是唯一的,这些都是使用二分法的前提条件,当大家看到题目描述满足如上条件的时候,可要想一想是不是可以用二分法了。
二分查找涉及的很多的边界条件,逻辑比较简单,但就是写不好。例如到底是 while(left < right)
还是 while(left <= right)
,到底是right = middle
呢,还是要right = middle - 1
呢?
大家写二分法经常写乱,主要是因为对区间的定义没有想清楚,区间的定义就是不变量。要在二分查找的过程中,保持不变量,就是在while寻找中每一次边界的处理都要坚持根据区间的定义来操作,这就是循环不变量规则。
写二分法,区间的定义一般为两种,左闭右闭即[left, right],或者左闭右开即[left, right)。
代码
(版本一)左闭右闭区间
class Solution:
def search(self, nums: List[int], target: int) -> int:
left = 0
right = len(nums)-1
while left <= right:
temp = left+(right-left)//2
if nums[temp] == target:
return(temp)
elif nums[temp] > target:
right = temp-1
else:
left = temp+1
else:
return -1
(版本二)左闭右开区间
class Solution:
def search(self, nums: List[int], target: int) -> int:
left,right =0, len(nums)
while left < right:
mid = (left + right) // 2
if nums[mid] < target:
left = mid+1
elif nums[mid] > target:
right = mid
else:
return mid
return -1
总结
二分法是非常重要的基础算法,为什么很多同学对于二分法都是一看就会,一写就废?
其实主要就是对区间的定义没有理解清楚,在循环中没有始终坚持根据查找区间的定义来做边界处理。
区间的定义就是不变量,那么在循环中坚持根据查找区间的定义来做边界处理,就是循环不变量规则。
02 移除元素
给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。
不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并原地修改输入数组。
元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。
示例 1: 给定 nums = [3,2,2,3], val = 3, 函数应该返回新的长度 2, 并且 nums 中的前两个元素均为 2。 你不需要考虑数组中超出新长度后面的元素。
示例 2: 给定 nums = [0,1,2,2,3,0,4,2], val = 2, 函数应该返回新的长度 5, 并且 nums 中的前五个元素为 0, 1, 3, 0, 4。
你不需要考虑数组中超出新长度后面的元素。
思路
数组的元素在内存地址中是连续的,不能单独删除数组中的某个元素,只能覆盖。
双指针法(快慢指针法): 通过一个快指针和慢指针在一个for循环下完成两个for循环的工作。
代码
class Solution:
"""双指针法
时间复杂度:O(n)
空间复杂度:O(1)
"""
def removeElement(self, nums: List[int], val: int) -> int:
slow = 0
fast = 0
while fast < len(nums):
if nums[fast] != val:
nums[slow] = nums[fast]
slow += 1
fast += 1
else:
fast += 1
return slow
03 有序数组的平方
给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。
示例 1: 输入:nums = [-4,-1,0,3,10] 输出:[0,1,9,16,100] 解释:平方后,数组变为 [16,1,0,9,100],排序后,数组变为 [0,1,9,16,100]
示例 2: 输入:nums = [-7,-3,2,3,11] 输出:[4,9,9,49,121]
思路
数组其实是有序的, 只不过负数平方之后可能成为最大数了。
那么数组平方的最大值就在数组的两端,不是最左边就是最右边,不可能是中间。
此时可以考虑双指针法了,i指向起始位置,j指向终止位置。
定义一个新数组result,和A数组一样的大小,让k指向result数组终止位置。
如果A[i] * A[i] < A[j] * A[j]
那么result[k--] = A[j] * A[j];
。
如果A[i] * A[i] >= A[j] * A[j]
那么result[k--] = A[i] * A[i];
。
代码
class Solution:
def sortedSquares(self, nums: List[int]) -> List[int]:
# nums = [i*i for i in nums]
# nums.sort()
# return nums
left, right = 0, len(nums)-1
size = len(nums)-1
new_nums = [0 for _ in range(size+1)]
while left <= right:
a = nums[left]*nums[left]
b = nums[right]*nums[right]
if a<b :
new_nums[size] = b
right -= 1
else:
new_nums[size] = a
left += 1
size -= 1
return new_nums
04 长度最小子数组
给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的 连续 子数组,并返回其长度。如果不存在符合条件的子数组,返回 0。
示例:
输入:s = 7, nums = [2,3,1,2,4,3] 输出:2 解释:子数组 [4,3] 是该条件下的长度最小的子数组。
思路
滑动窗口。
所谓滑动窗口,就是不断的调节子序列的起始位置和终止位置,从而得出我们要想的结果。
这里还是以题目中的示例来举例,s=7, 数组是 2,3,1,2,4,3,来看一下查找的过程:
在本题中实现滑动窗口,主要确定如下三点:
- 窗口内是什么?
- 如何移动窗口的起始位置?
- 如何移动窗口的结束位置?
窗口就是 满足其和 ≥ s 的长度最小的 连续 子数组。
窗口的起始位置如何移动:如果当前窗口的值大于s了,窗口就要向前移动了(也就是该缩小了)。
窗口的结束位置如何移动:窗口的结束位置就是遍历数组的指针,窗口的起始位置设置为数组的起始位置就可以了。
代码
class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
left = 0
Sum = 0
length = float('inf')
for i in range(len(nums)):
Sum += nums[i]
while Sum>=target:
length = min(length, i-left+1)
Sum -= nums[left]
left += 1
return 0 if length==float('inf') else length
05 螺旋矩阵
给定一个正整数 n,生成一个包含 1 到 n^2 所有元素,且元素按顺时针顺序螺旋排列的正方形矩阵。
示例:
输入: 3 输出: [ [ 1, 2, 3 ], [ 8, 9, 4 ], [ 7, 6, 5 ] ]
思路
本题并不涉及到什么算法,就是模拟过程,但却十分考察对代码的掌控能力。
要如何画出这个螺旋排列的正方形矩阵呢?
相信很多同学刚开始做这种题目的时候,上来就是一波判断猛如虎。
结果运行的时候各种问题,然后开始各种修修补补,最后发现改了这里哪里有问题,改了那里这里又跑不起来了。
而求解本题依然是要坚持循环不变量原则。
模拟顺时针画矩阵的过程:
- 填充上行从左到右
- 填充右列从上到下
- 填充下行从右到左
- 填充左列从下到上
由外向内一圈一圈这么画下去。
可以发现这里的边界条件非常多,在一个循环中,如此多的边界条件,如果不按照固定规则来遍历,那就是一进循环深似海,从此offer是路人。
代码
class Solution:
def generateMatrix(self, n: int) -> List[List[int]]:
# 矩阵初始化
matrix = [ [0]*n for _ in range(n) ]
left, right, up, down = 0, n-1, 0, n-1
number = 1 # 填充的数字
while left<right and up<down:
# 从左到右填充
for i in range(left, right):
matrix[up][i] = number
number += 1
# 从上到下填充
for j in range(up, down):
matrix[j][right] = number
number += 1
# 从右到左填充
for x in range(right, left, -1):
matrix[down][x] = number
number += 1
# 从下到上填充
for y in range(down, up, -1):
matrix[y][left] = number
number += 1
# 下一次边界
left += 1
right -= 1
up += 1
down -= 1
# 当 n 为奇数时,单独填充中心点
if n%2:
matrix[n//2][n//2] = number
return matrix
原创地址为 代码随想录,这是一个刷题网站,讲得很详细,推荐跟着里面的步骤来。这里主要是把数组的内容做一个总结。