• 【[SDOI2016]生成魔咒】


    这是一道(SA)的练手好题

    建议做之前先去做一下2408

    之后你就肯定会做这道题了

    首先上面那道题的答案就是

    [sum_{i=1}^nn+1-sa[i]-het[i] ]

    就是对于每一个后缀求出其能产生的子串,之后减掉和之前本质相同的子串

    对于这个题,我们需要求出所有前缀的本质不同的子串个数

    先无脑敲上(sa)(het)的板子,之后我们只需要往里面动态添加后缀就好了

    但是如果正着处理的话会有一个非常显然的问题,也就是我们加进去一个后缀,但是这个后缀和之前的一些后缀形成的(lcp)长度超过当前的长度,会导致我们很难计算

    所以我们需要把字符串倒过来,之后每次往里面添加一个后缀就只相当于往里面添加了一个字符

    反置字符串显然不会令子串变得不相等,于是我们可以完美解决这个问题

    之后我们维护上面的那个柿子就好了,由于我们插入的(sa)值并不连续,所以我们不能直接用(het),而是(het)的最小值

    于是我们用一个(st)表来查询(het)的最小值,之后每插入一个点相当于要断裂一个原来存在的排名连续的后缀,所以还需要一个(set)来找前驱和后继

    代码

    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<algorithm>
    #include<set>
    #define re register
    #define LL long long
    #define maxn 100005
    #define set_it std::set<int>::iterator
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    inline int read()
    {
    	re char c=getchar();int x=0;
    	while(c<'0'||c>'9') c=getchar();
    	while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
    }
    int a[maxn],rk[maxn],tp[maxn],tax[maxn],sa[maxn],het[maxn],b[maxn],to[maxn];
    int St[maxn][18],log_2[maxn];
    int n,m,sz;LL ans=1;
    std::set<int> s;
    inline void qsort()
    {
    	for(re int i=0;i<=m;i++) tax[i]=0;
    	for(re int i=1;i<=n;i++) tax[rk[i]]++;
    	for(re int i=1;i<=m;i++) tax[i]+=tax[i-1];
    	for(re int i=n;i;--i) sa[tax[rk[tp[i]]]--]=tp[i];
    }
    inline int Pre(int x)
    {
        s.insert(x); set_it i=s.find(x);
        if(i==s.begin()) return -1; --i; return *i;
    }
    inline int Nxt(int x) {set_it i=s.find(x);++i;if(i==s.end()) return -1;return *i;}
    inline int find(int x)
    {
    	int l=1,r=sz;while(l<=r)
    	{
    		int mid=l+r>>1;if(b[mid]==x) return mid;
    		if(b[mid]<x) l=mid+1;else r=mid-1;
    	}return 0;
    }
    inline int ask(int l,int r) {int k=log_2[r-l+1];return min(St[l][k],St[r-(1<<k)+1][k]);}
    int main()
    {
    	n=read();for(re int i=n;i;--i) a[i]=read(),b[i]=a[i];
    	std::sort(b+1,b+n+1);m=sz=std::unique(b+1,b+n+1)-b-1;
    	for(re int i=1;i<=n;i++) a[i]=find(a[i]);
    	for(re int i=1;i<=n;i++) rk[i]=a[i],tp[i]=i;
    	qsort();
    	for(re int w=1,p=0;p<n;w<<=1,m=p)
    	{
    		p=0;
    		for(re int i=1;i<=w;i++) tp[++p]=n-w+i;
    		for(re int i=1;i<=n;i++) if(sa[i]>w) tp[++p]=sa[i]-w;
    		qsort();for(re int i=1;i<=n;i++) std::swap(rk[i],tp[i]);
    		rk[sa[1]]=p=1;
    		for(re int i=2;i<=n;i++) rk[sa[i]]=(tp[sa[i-1]]==tp[sa[i]]&&tp[sa[i-1]+w]==tp[sa[i]+w])?p:++p;
    	}
    	int k=0;
    	for(re int i=1;i<=n;i++)
    	{
    		if(k) --k;
    		int j=sa[rk[i]-1];
    		while(a[i+k]==a[j+k]) ++k;
    		het[rk[i]]=k;
    	}
    	for(re int i=2;i<=n;i++) log_2[i]=1+log_2[i>>1];
    	for(re int i=1;i<=n;i++) St[i][0]=het[i];
    	for(re int j=1;j<=17;j++)
    		for(re int i=1;i+(1<<j)-1<=n;i++)
    			St[i][j]=min(St[i][j-1],St[i+(1<<(j-1))][j-1]);puts("1");s.insert(rk[n]);
    	for(re int i=n-1;i;--i)
    	{
    		ans+=n-i+1;
    		int x=Pre(rk[i]);
    		if(x!=-1) {int t=ask(x+1,rk[i]);ans+=to[x],ans-=t;to[x]=t;}
    		x=Nxt(rk[i]);
    		if(x!=-1) to[rk[i]]=ask(rk[i]+1,x),ans-=to[rk[i]];
    		printf("%lld
    ",ans);
    	}
    	return 0;
    }
    
    
  • 相关阅读:
    高德地图之 鼠标移进移出时 图标的改变
    高德地图之--海外地图
    angular表单验证
    angularJs 页面加载页面
    angularJs tab样式切换方法之一
    资源
    JavaScript规范
    H5 用 iScroll实现上拉加载 下拉刷新的功能
    ionic项目之极光推送--通知
    Day6 function
  • 原文地址:https://www.cnblogs.com/asuldb/p/10205614.html
Copyright © 2020-2023  润新知